Do you want to publish a course? Click here

Diffusion with very weak confinement

56   0   0.0 ( 0 )
 Added by Emeric Bouin
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to Fokker-Planck and linear kinetic equations with very weak confinement corresponding to a potential with an at most logarithmic growth and no integrable stationary state. Our goal is to understand how to measure the decay rates when the diffusion wins over the confinement although the potential diverges at infinity.



rate research

Read More

In this paper we study the Cauchy problem for the Landau Hamiltonian wave equation, with time dependent irregular (distributional) electromagnetic field and similarly irregular velocity. For such equations, we describe the notion of a `very weak solution adapted to the type of solutions that exist for regular coefficients. The construction is based on considering Friedrichs-type mollifier of the coefficients and corresponding classical solutions, and their quantitative behaviour in the regularising parameter. We show that even for distributional coefficients, the Cauchy problem does have a very weak solution, and that this notion leads to classical or distributional type solutions under conditions when such solutions also exist.
89 - Katharina Hopf 2021
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consistent models, and their formal entropy structure allows us to use as a key tool a suitably adjusted relative entropy method. Weak-strong uniqueness is obtained for general entropy-dissipating reactions without growth restrictions, and certain models with a non-integrable diffusive flux. The results also apply to a class of (isoenergetic) reaction-cross-diffusion systems.
We prove existence and uniqueness of distributional, bounded, nonnegative solutions to a fractional filtration equation in ${mathbb R}^d$. With regards to uniqueness, it was shown even for more general equations in [19] that if two bounded solutions $u,w$ of (1.1) satisfy $u-win L^1({mathbb R}^dtimes(0,T))$, then $u=w$. We obtain here that this extra assumption can in fact be removed and establish uniqueness in the class of merely bounded solutions, provided they are nonnegative. Indeed, we show that a minimal solution exists and that any other solution must coincide with it. As a consequence, distributional solutions have locally-finite energy.
71 - Weirun Tao , Yuxiang Li 2018
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot abla c=Delta c-nf(c),& xinOmega, t>0, u_t+(ucdot abla) u=Delta u+ abla P+n ablaPhi,& xinOmega, t>0, ablacdot u=0,& xinOmega, t>0 end{array}right. end{eqnarray} under homogeneous boundary conditions of Neumann type for $n$ and $c$, and of Dirichlet type for $u$ in a bounded convex domain $Omegasubset mathbb{R}^3$ with smooth boundary. Here, $Phiin W^{1,infty}(Omega)$, $0<chiin C^2([0,infty))$ and $0leq fin C^1([0,infty))$ with $f(0)=0$. It is proved that if $p>frac{32}{15}$ and under appropriate structural assumptions on $f$ and $chi$, for all sufficiently smooth initial data $(n_0,c_0,u_0)$ the model possesses at least one global weak solution.
252 - Hailong Ye , Chunhua Jin 2021
In this paper, we study the time periodic problem to a three-dimensional chemotaxis-Stokes model with porous medium diffusion $Delta n^m$ and inhomogeneous mixed boundary conditions. By using a double-level approximation method and some iterative techniques, we obtain the existence and time-space uniform boundedness of weak time periodic solutions for any $m>1$. Moreover, we improve the regularity for $mlefrac{4}{3}$ and show that the obtained periodic solutions are in fact strong periodic solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا