Do you want to publish a course? Click here

Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field

86   0   0.0 ( 0 )
 Added by Michael Ruzhansky
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the Cauchy problem for the Landau Hamiltonian wave equation, with time dependent irregular (distributional) electromagnetic field and similarly irregular velocity. For such equations, we describe the notion of a `very weak solution adapted to the type of solutions that exist for regular coefficients. The construction is based on considering Friedrichs-type mollifier of the coefficients and corresponding classical solutions, and their quantitative behaviour in the regularising parameter. We show that even for distributional coefficients, the Cauchy problem does have a very weak solution, and that this notion leads to classical or distributional type solutions under conditions when such solutions also exist.



rate research

Read More

We prove existence and uniqueness of distributional, bounded, nonnegative solutions to a fractional filtration equation in ${mathbb R}^d$. With regards to uniqueness, it was shown even for more general equations in [19] that if two bounded solutions $u,w$ of (1.1) satisfy $u-win L^1({mathbb R}^dtimes(0,T))$, then $u=w$. We obtain here that this extra assumption can in fact be removed and establish uniqueness in the class of merely bounded solutions, provided they are nonnegative. Indeed, we show that a minimal solution exists and that any other solution must coincide with it. As a consequence, distributional solutions have locally-finite energy.
This paper discusses some regularity of almost periodic solutions of the Poissons equation $-Delta u = f$ in $mathbb{R}^n$, where $f$ is an almost periodic function. It has been proved by Sibuya [Almost periodic solutions of Poissons equation. Proc. Amer. Math. Soc., 28:195--198, 1971.] that if $u$ is a bounded continuous function and solves the Poissons equation in the distribution sense, then $u$ is an almost periodic function. In this work, we relax the assumption of the usual boundedness into boundedness in the sense of distribution which we refer to as a bounded generalized function. The set of bounded generalized functions are wider than the set of usual bounded functions. Then, upon assuming that $u$ is a bounded generalized function and solves the Poissons equation in the distribution sense, we prove that this solution is bounded in the usual sense, continuous and almost periodic. Moreover, we show that the first partial derivatives of the solution $partial u/ partial x_i$, $i=1, ldots, n$, are also continuous, bounded, and almost periodic functions. The technique is based on extending a representation formula using Greens function for Poissons equation for solutions in the distribution sense. Some useful properties of distributions are also shown that can be used to study other elliptic problems.
We investigate the stationary diffusion equation with a coefficient given by a (transformed) Levy random field. Levy random fields are constructed by smoothing Levy noise fields with kernels from the Matern class. We show that Levy noise naturally extends Gaussian white noise within Minlos theory of generalized random fields. Results on the distributional path spaces of Levy noise are derived as well as the amount of smoothing to ensure such distributions become continuous paths. Given this, we derive results on the pathwise existence and measurability of solutions to the random boundary value problem (BVP). For the solutions of the BVP we prove existence of moments (in the $H^1$-norm) under adequate growth conditions on the Levy measure of the noise field. Finally, a kernel expansion of the smoothed Levy noise fields is introduced and convergence in $L^n$ ($ngeq 1$) of the solutions associated with the approximate random coefficients is proven with an explicit rate.
371 - Arnaud Guillin 2019
We study the long time behaviour of the kinetic Fokker-Planck equation with mean field interaction, whose limit is often called Vlasov-Fkker-Planck equation. We prove a uniform (in the number of particles) exponential convergence to equilibrium for the solutions in the weighted Sobolev space H 1 ($mu$) with a rate of convergence which is explicitly computable and independent of the number of particles. The originality of the proof relies on functional inequalities and hypocoercivity with Lyapunov type conditions, usually not suitable to provide adimensional results.
191 - Thomas Duyckaerts 2007
We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical behavior of solutions of the equation. In the present article we study the dynamics at the critical level E(u_0,u_1)=E(W,0) and classify the corresponding solutions. We show in particular the existence of two special solutions, connecting different behaviors for negative and positive times. Our results are analoguous to our previous work on radial Schrodinger equation, but without any radial assumption on the data. We also refine the understanding of the dynamical behavior of the special solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا