Do you want to publish a course? Click here

Directly pumped 10 GHz microcomb modules from low-power diode lasers

114   0   0.0 ( 0 )
 Added by Myoung-Gyun Suh
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Soliton microcombs offer the prospect of advanced optical metrology and timing systems in compact form factors. In these applications, pumping of microcombs directly from a semiconductor laser without amplification or triggering components is desirable for reduced power operation and to simplify system design. At the same time, low repetition rate microcombs are required in many comb applications for interface to detectors and electronics, but their increased mode volume makes them challenging to pump at low power. Here, 10 GHz repetition rate soliton microcombs are directly pumped by low-power (< 20 mW) diode lasers. High-Q silica microresonators are used for this low power operation and are packaged into fiber-connectorized modules that feature temperature control for improved long-term frequency stability.



rate research

Read More

217 - Nathalie Nagl 2019
Lasers based on Cr$^{2+}$-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr$^{2+}$-doped II-VI oscillator pumped by a single InP diode, providing average powers of over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 $mu$m. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step towards a more accessible alternative to synchrotron-like infrared radiation, and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.
391 - Fan Wang , Steven G. Johnson , 2021
Quantum cascade laser (QCL)-pumped molecular lasers (QPMLs) have recently been introduced as a new source of powerful (>1 mW), tunable (>1 THz), narrow-band (<10 kHz), continuous-wave terahertz radiation. The performance of these lasers depends critically on molecular collision physics, pump saturation, and on the design of the laser cavity. Using a validated three-level model that captures the essential collision and saturation behaviors of the QPML gas nitrous oxide (N2O),we explore how threshold pump power and output terahertz power depend on pump power, gas pressure, as well as on the diameter, length, and output-coupler transmissivity of a cylindrical cavity.The analysis indicates that maximum power occurs as pump saturation is minimized in a manner that depends much more sensitively on pressure than on cell diameter, length, or transmissivity. A near-optimal compact laser cavity can produce more than 10 mW of power tunable over frequencies above 1 THz when pumped by a multi-watt QCL.
High-power lasers have numerous scientific and industrial applications. Some key areas include laser cutting and welding in manufacturing, directed energy in fusion reactors or defense applications, laser surgery in medicine, and advanced photolithography in the semiconductor industry. These applications require optical components, in particular mirrors, that withstand high optical powers for directing light from the laser to the target. Ordinarily, mirrors are comprised of multilayer coatings of different refractive index and thickness. At high powers, imperfections in these layers lead to absorption of light, resulting in thermal stress and permanent damage to the mirror. Here we design, simulate, fabricate, and demonstrate monolithic and highly reflective dielectric mirrors which operate under high laser powers without damage. The mirrors are realized by etching nanostructures into the surface of single-crystal diamond, a material with exceptional optical and thermal properties. We measure reflectivities of greater than 98% and demonstrate damage-free operation using 10 kW of continuous-wave laser light at 1070 nm, with intensities up to 4.6 MW/cm2. In contrast, at these laser powers, we observe damage to a standard dielectric mirror based on optical coatings. Our results initiate a new category of broadband optics that operate in extreme conditions.
The Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Earth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb). A unitravelling-carrier photodiode (UTC-PD) converts low-noise optical soliton pulses from the microcomb to a terahertz wave at the solitons repetition rate (331 GHz). With a free-running microcomb, the Allan deviation of the Terahertz signal is 4.5*10^-9 at 1 s measurement time with a phase noise of -72 dBc/Hz (-118 dBc/Hz) at 10 kHz (10 MHz) offset frequency. By locking the repetition rate to an in-house hydrogen maser, in-loop fractional frequency stabilities of 9.6*10^-15 and 1.9*10^-17 are obtained at averaging times of 1 s and 2000 s respectively, limited by the maser reference signal. Moreover, the terahertz signal is successfully used to perform a proof-of-principle demonstration of terahertz imaging of peanuts. Combining the monolithically integrated UTC-PD with an on-chip microcomb, the demonstrated technique could provide a route towards highly stable continuous terahertz wave generation in chip-scale packages for out-of-the-lab applications. In particular, such systems would be useful as compact tools for high-capacity wireless communication, spectroscopy, imaging, remote sensing, and astrophysical applications.
160 - Zhuang Zhao 2015
High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا