Do you want to publish a course? Click here

Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator

218   0   0.0 ( 0 )
 Added by Nathalie Nagl
 Publication date 2019
  fields Physics
and research's language is English
 Authors Nathalie Nagl




Ask ChatGPT about the research

Lasers based on Cr$^{2+}$-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr$^{2+}$-doped II-VI oscillator pumped by a single InP diode, providing average powers of over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 $mu$m. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step towards a more accessible alternative to synchrotron-like infrared radiation, and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.

rate research

Read More

Continuous-wave mode-locked femtosecond 2 um solid-state laser with a c-cut Tm:CaYAlO4 as gain medium was experimentally demonstrated. The mode locked laser generated stable pulses with average output power as high as 531 mW, pulse duration of 496 fs, and repetition rate of 97 MHz at 1975 nm. The research results show that Tm:CaYAlO4 is an excellent gain medium for femtosecond pulse generation at 2um wavelength.
The theoretical calculation for nonlinear refractive index in Cr: ZnSe - active medium predicts the strong defocusing cascaded second-order nonlinearity within 2000 - 3000 nm spectral range. On the basis of this result the optimal cavity configuration for Kerr-lens mode locking is proposed that allows to achieve a sub-100 fs pulse duration. The numerical simulations testify about strong destabilizing processes in the laser resulting from a strong self-phase modulation. The stabilization of the ultrashort pulse generation is possible due to spectral filtering that increases the pulse duration up to 300 fs.
While the performance of mode-locked fiber lasers has been improved significantly, the limited gain bandwidth restricts them to generate ultrashort pulses approaching a few cycles or even shorter. Here we present a novel method to achieve few cycle pulses (~5 cycles) with ultra-broad spectrum (~400 nm). To our best knowledge, this is the shortest pulse width and broadest spectrum directly generated from fiber lasers. It is noteworthy that a dramatic ultrashort pulse evolution can be stabilized in a laser oscillator by the unique nonlinear processes of a self-similar evolution as a nonlinear attractor in the gain fiber and a perfect saturable absorber action of the Mamyshev oscillator.
Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.
In this letter, we investigate a Yb-doped mode-locked fiber oscillator that uses coherent pulse division and recombination to avoid excessive nonlinear phase shifts. The mode-locking mechanism of the laser is based on the accumulation of a differential nonlinear phase between orthogonal polarization modes in the polarization-maintaining fiber segment. The inserted coherent pulse divider, based on YVO4-crystals rotated successively by 45{deg}, enables stable and undistorted mode-locked steady-states. The output pulse energy is increased from 89 pJ in the non-divided operation by ~6.5 dB to more than 400 pJ with three divisions. Measurements of the amplitude-fluctuations reveal a simultaneous broadband reduction of up to ~9 dB in the frequency range from 10 kHz to 2MHz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا