No Arabic abstract
Emerging transportation technologies, such as ride-hailing and autonomous vehicles, are disrupting the transportation sector and transforming public transit. Some transit observers envision future public transit to be integrated transit systems with fixed-route services running along major corridors and on-demand ridesharing services covering lower-density areas. A switch from a conventional fixed-route service model to this kind of integrated mobility-on-demand transit system, however, may elicit varied responses from local residents. This paper evaluates traveler preferences for a proposed integrated mobility-on-demand transit system versus the existing fixed-route system, with a particular focus on disadvantaged travelers. We conducted a survey in two low-resource communities in the United States, namely, Detroit and Ypsilanti, Michigan. A majority of survey respondents preferred a mobility-on-demand transit system over a fixed-route one. Based on ordered logit model outputs, we found a stronger preference for mobility-on-demand transit among males, college graduates, individuals who have never heard of or used ride-hailing before, and individuals who currently receive inferior transit services. By contrast, preferences varied little by age, income, race, or disability status. The most important benefit of a mobility-on-demand transit system perceived by the survey respondents is enhanced transit accessibility to different destinations, whereas their major concerns include the need to actively request rides, possible transit-fare increases, and potential technological failures. Addressing the concerns of female riders and accommodating the needs of less technology-proficient individuals should be major priorities for transit agencies that are considering mobility-on-demand initiatives.
Concepts of Mobility-on-Demand (MOD) and Mobility as a Service (MaaS), which feature the integration of various shared-use mobility options, have gained widespread popularity in recent years. While these concepts promise great benefits to travelers, their heavy reliance on technology raises equity concerns as socially disadvantaged population groups can be left out in an era of on-demand mobility. This paper investigates the potential uptake of MOD transit services (integrated fixed-route and on-demand services) among travelers living in low-income communities. Specially, we analyze peoples latent attitude towards three shared-use mobility services, including ride-hailing services, fixed-route transit, and MOD transit. We conduct a latent class cluster analysis of 825 survey respondents sampled from low-income neighborhoods in Detroit and Ypsilanti, Michigan. We identified three latent segments: shared-mode enthusiast, shared-mode opponent, and fixed-route transit loyalist. People from the shared-mode enthusiast segment often use ride-hailing services and live in areas with poor transit access, and they are likely to be the early adopters of MOD transit services. The shared-mode opponent segment mainly includes vehicle owners who lack interests in shared mobility options. The fixed-route transit loyalist segment includes a considerable share of low-income individuals who face technological barriers to use the MOD transit. We also find that males, college graduates, car owners, people with a mobile data plan, and people living in poor-transit-access areas have a higher level of preferences for MOD transit services. We conclude with policy recommendations for developing more accessible and equitable MOD transit services.
In this study, we propose a three-stage framework for the planning and scheduling of high-capacity mobility-on-demand services (e.g., micro transit and flexible transit) at urban activity hubs. The proposed framework consists of (1) the route generation step to and from the activity hub with connectivity to existing transit systems, and (2) the robust route scheduling step which determines the vehicle assignment and route headway under demand uncertainty. Efficient exact and heuristic algorithms are developed for identifying the minimum number of routes that maximize passenger coverage, and a matching scheme is proposed to combine routes to and from the hub into roundtrips optimally. With the generated routes, the robust route scheduling problem is formulated as a two-stage robust optimization problem. Model reformulations are introduced to solve the robust optimization problem into the global optimum. In this regard, the proposed framework presents both algorithmic and analytic solutions for developing the hub-based transit services in response to the varying passenger demand over a short-time period. To validate the effectiveness of the proposed framework, comprehensive numerical experiments are conducted for planning the HHMoD services at the JFK airport in New York City (NYC). The results show the superior performance of the proposed route generation algorithm to maximize the citywide coverage more efficiently. The results also demonstrate the cost-effectiveness of the robust route schedules under normal demand conditions and against worst-case-oriented realizations of passenger demand.
Recent years have witnessed an increased focus on interpretability and the use of machine learning to inform policy analysis and decision making. This paper applies machine learning to examine travel behavior and, in particular, on modeling changes in travel modes when individuals are presented with a novel (on-demand) mobility option. It addresses the following question: Can machine learning be applied to model individual taste heterogeneity (preference heterogeneity for travel modes and response heterogeneity to travel attributes) in travel mode choice? This paper first develops a high-accuracy classifier to predict mode-switching behavior under a hypothetical Mobility-on-Demand Transit system (i.e., stated-preference data), which represents the case study underlying this research. We show that this classifier naturally captures individual heterogeneity available in the data. Moreover, the paper derives insights on heterogeneous switching behaviors through the generation of marginal effects and elasticities by current travel mode, partial dependence plots, and individual conditional expectation plots. The paper also proposes two new model-agnostic interpretation tools for machine learning, i.e., conditional partial dependence plots and conditional individual partial dependence plots, specifically designed to examine response heterogeneity. The results on the case study show that the machine-learning classifier, together with model-agnostic interpretation tools, provides valuable insights on travel mode switching behavior for different individuals and population segments. For example, the existing drivers are more sensitive to additional pickups than people using other travel modes, and current transit users are generally willing to share rides but reluctant to take any additional transfers.
Logit models are usually applied when studying individual travel behavior, i.e., to predict travel mode choice and to gain behavioral insights on traveler preferences. Recently, some studies have applied machine learning to model travel mode choice and reported higher out-of-sample predictive accuracy than traditional logit models (e.g., multinomial logit). However, little research focuses on comparing the interpretability of machine learning with logit models. In other words, how to draw behavioral insights from the high-performance black-box machine-learning models remains largely unsolved in the field of travel behavior modeling. This paper aims at providing a comprehensive comparison between the two approaches by examining the key similarities and differences in model development, evaluation, and behavioral interpretation between logit and machine-learning models for travel mode choice modeling. To complement the theoretical discussions, the paper also empirically evaluates the two approaches on the stated-preference survey data for a new type of transit system integrating high-frequency fixed-route services and ridesourcing. The results show that machine learning can produce significantly higher predictive accuracy than logit models. Moreover, machine learning and logit models largely agree on many aspects of behavioral interpretations. In addition, machine learning can automatically capture the nonlinear relationship between the input features and choice outcomes. The paper concludes that there is great potential in merging ideas from machine learning and conventional statistical methods to develop refined models for travel behavior research and suggests some new research directions.
Droughts are a recurring hazard in sub-Saharan Africa, that can wreak huge socioeconomic costs.Acting early based on alerts provided by early warning systems (EWS) can potentially provide substantial mitigation, reducing the financial and human cost. However, existing EWS tend only to monitor current, rather than forecast future, environmental and socioeconomic indicators of drought, and hence are not always sufficiently timely to be effective in practice. Here we present a novel method for forecasting satellite-based indicators of vegetation condition. Specifically, we focused on the 3-month Vegetation Condition Index (VCI3M) over pastoral livelihood zones in Kenya, which is the indicator used by the Kenyan National Drought Management Authority(NDMA). Using data from MODIS and Landsat, we apply linear autoregression and Gaussian process modeling methods and demonstrate high forecasting skill several weeks ahead. As a benchmark we predicted the drought alert marker used by NDMA (VCI3M<35). Both of our models were able to predict this alert marker four weeks ahead with a hit rate of around 89% and a false alarm rate of around 4%, or 81% and 6% respectively six weeks ahead. The methods developed here can thus identify a deteriorating vegetation condition well and sufficiently in advance to help disaster risk managers act early to support vulnerable communities and limit the impact of a drought hazard.