Do you want to publish a course? Click here

Residual Attention based Network for Hand Bone Age Assessment

109   0   0.0 ( 0 )
 Added by Bin Kong
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Computerized automatic methods have been employed to boost the productivity as well as objectiveness of hand bone age assessment. These approaches make predictions according to the whole X-ray images, which include other objects that may introduce distractions. Instead, our framework is inspired by the clinical workflow (Tanner-Whitehouse) of hand bone age assessment, which focuses on the key components of the hand. The proposed framework is composed of two components: a Mask R-CNN subnet of pixelwise hand segmentation and a residual attention network for hand bone age assessment. The Mask R-CNN subnet segments the hands from X-ray images to avoid the distractions of other objects (e.g., X-ray tags). The hierarchical attention components of the residual attention subnet force our network to focus on the key components of the X-ray images and generate the final predictions as well as the associated visual supports, which is similar to the assessment procedure of clinicians. We evaluate the performance of the proposed pipeline on the RSNA pediatric bone age dataset and the results demonstrate its superiority over the previous methods.



rate research

Read More

Bone age assessment (BAA) is clinically important as it can be used to diagnose endocrine and metabolic disorders during child development. Existing deep learning based methods for classifying bone age use the global image as input, or exploit local information by annotating extra bounding boxes or key points. However, training with the global image underutilizes discriminative local information, while providing extra annotations is expensive and subjective. In this paper, we propose an attention-guided approach to automatically localize the discriminative regions for BAA without any extra annotations. Specifically, we first train a classification model to learn the attention maps of the discriminative regions, finding the hand region, the most discriminative region (the carpal bones), and the next most discriminative region (the metacarpal bones). Guided by those attention maps, we then crop the informative local regions from the original image and aggregate different regions for BAA. Instead of taking BAA as a general regression task, which is suboptimal due to the label ambiguity problem in the age label space, we propose using joint age distribution learning and expectation regression, which makes use of the ordinal relationship among hand images with different individual ages and leads to more robust age estimation. Extensive experiments are conducted on the RSNA pediatric bone age data set. Using no training annotations, our method achieves competitive results compared with existing state-of-the-art semi-automatic deep learning-based methods that require manual annotation. Code is available at https: //github.com/chenchao666/Bone-Age-Assessment.
Bone age assessment is an important clinical trial to measure skeletal child maturity and diagnose of growth disorders. Conventional approaches such as the Tanner-Whitehouse (TW) and Greulich and Pyle (GP) may not perform well due to their large inter-observer and intra-observer variations. In this paper, we propose a finger joint localization strategy to filter out most non-informative parts of images. When combining with the conventional full image-based deep network, we observe a much-improved performance. % Our approach utilizes full hand and specific joints images for skeletal maturity prediction. In this study, we applied powerful deep neural network and explored a process in the forecast of skeletal bone age with the specifically combine joints images to increase the performance accuracy compared with the whole hand images.
In this paper, we propose a novel hand-based person recognition method for the purpose of criminal investigations since the hand image is often the only available information in cases of serious crime such as sexual abuse. Our proposed method, Multi-Branch with Attention Network (MBA-Net), incorporates both channel and spatial attention modules in branches in addition to a global (without attention) branch to capture global structural information for discriminative feature learning. The attention modules focus on the relevant features of the hand image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. Extensive evaluations on two large multi-ethnic and publicly available hand datasets demonstrate that our proposed method achieves state-of-the-art performance, surpassing the existing hand-based identification methods.
Estimation of bone age from hand radiographs is essential to determine skeletal age in diagnosing endocrine disorders and depicting the growth status of children. However, existing automatic methods only apply their models to test images without considering the discrepancy between training samples and test samples, which will lead to a lower generalization ability. In this paper, we propose an adversarial regression learning network (ARLNet) for bone age estimation. Specifically, we first extract bone features from a fine-tuned Inception V3 neural network and propose regression percentage loss for training. To reduce the discrepancy between training and test data, we then propose adversarial regression loss and feature reconstruction loss to guarantee the transition from training data to test data and vice versa, preserving invariant features from both training and test data. Experimental results show that the proposed model outperforms state-of-the-art methods.
115 - Fuxun Yu , Chenchen Liu , Di Wang 2020
Convolutional Neural Networks (CNNs) achieved great cognitive performance at the expense of considerable computation load. To relieve the computation load, many optimization works are developed to reduce the model redundancy by identifying and removing insignificant model components, such as weight sparsity and filter pruning. However, these works only evaluate model components static significance with internal parameter information, ignoring their dynamic interaction with external inputs. With per-input feature activation, the model component significance can dynamically change, and thus the static methods can only achieve sub-optimal results. Therefore, we propose a dynamic CNN optimization framework in this work. Based on the neural network attention mechanism, we propose a comprehensive dynamic optimization framework including (1) testing-phase channel and column feature map pruning, as well as (2) training-phase optimization by targeted dropout. Such a dynamic optimization framework has several benefits: (1) First, it can accurately identify and aggressively remove per-input feature redundancy with considering the model-input interaction; (2) Meanwhile, it can maximally remove the feature map redundancy in various dimensions thanks to the multi-dimension flexibility; (3) The training-testing co-optimization favors the dynamic pruning and helps maintain the model accuracy even with very high feature pruning ratio. Extensive experiments show that our method could bring 37.4% to 54.5% FLOPs reduction with negligible accuracy drop on various of test networks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا