Do you want to publish a course? Click here

A Comprehensive Performance Evaluation for 3D Transformation Estimation Techniques

84   0   0.0 ( 0 )
 Added by Bao Zhao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

3D local feature extraction and matching is the basis for solving many tasks in the area of computer vision, such as 3D registration, modeling, recognition and retrieval. However, this process commonly draws into false correspondences, due to noise, limited features, occlusion, incomplete surface and etc. In order to estimate accurate transformation based on these corrupted correspondences, numerous transformation estimation techniques have been proposed. However, the merits, demerits and appropriate application for these methods are unclear owing to that no comprehensive evaluation for the performance of these methods has been conducted. This paper evaluates eleven state-of-the-art transformation estimation proposals on both descriptor based and synthetic correspondences. On descriptor based correspondences, several evaluation items (including the performance on different datasets, robustness to different overlap ratios and the performance of these technique combined with Iterative Closest Point (ICP), different local features and LRF/A techniques) of these methods are tested on four popular datasets acquired with different devices. On synthetic correspondences, the robustness of these methods to varying percentages of correct correspondences (PCC) is evaluated. In addition, we also evaluate the efficiencies of these methods. Finally, the merits, demerits and application guidance of these tested transformation estimation methods are summarized.



rate research

Read More

Matching surfaces is a challenging 3D Computer Vision problem typically addressed by local features. Although a variety of 3D feature detectors and descriptors has been proposed in literature, they have seldom been proposed together and it is yet not clear how to identify the most effective detector-descriptor pair for a specific application. A promising solution is to leverage machine learning to learn the optimal 3D detector for any given 3D descriptor [15]. In this paper, we report a performance evaluation of the detector-descriptor pairs obtained by learning a paired 3D detector for the most popular 3D descriptors. In particular, we address experimental settings dealing with object recognition and surface registration.
460 - Yansong Tang , Jiwen Lu , Jie Zhou 2020
Thanks to the substantial and explosively inscreased instructional videos on the Internet, novices are able to acquire knowledge for completing various tasks. Over the past decade, growing efforts have been devoted to investigating the problem on instructional video analysis. However, the most existing datasets in this area have limitations in diversity and scale, which makes them far from many real-world applications where more diverse activities occur. To address this, we present a large-scale dataset named as COIN for COmprehensive INstructional video analysis. Organized with a hierarchical structure, the COIN dataset contains 11,827 videos of 180 tasks in 12 domains (e.g., vehicles, gadgets, etc.) related to our daily life. With a new developed toolbox, all the videos are annotated efficiently with a series of step labels and the corresponding temporal boundaries. In order to provide a benchmark for instructional video analysis, we evaluate plenty of approaches on the COIN dataset under five different settings. Furthermore, we exploit two important characteristics (i.e., task-consistency and ordering-dependency) for localizing important steps in instructional videos. Accordingly, we propose two simple yet effective methods, which can be easily plugged into conventional proposal-based action detection models. We believe the introduction of the COIN dataset will promote the future in-depth research on instructional video analysis for the community. Our dataset, annotation toolbox and source code are available at http://coin-dataset.github.io.
Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications. However, they are vulnerable to adversarial examples, which motivates the adversarial defense. By adopting simple evaluation metrics, most of the current defenses only conduct incomplete evaluations, which are far from providing comprehensive understandings of the limitations of these defenses. Thus, most proposed defenses are quickly shown to be attacked successfully, which result in the arm race phenomenon between attack and defense. To mitigate this problem, we establish a model robustness evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics, which could fully evaluate model robustness and provide deep insights into building robust models. With 23 evaluation metrics in total, our framework primarily focuses on the two key factors of adversarial learning (ie, data and model). Through neuron coverage and data imperceptibility, we use data-oriented metrics to measure the integrity of test examples; by delving into model structure and behavior, we exploit model-oriented metrics to further evaluate robustness in the adversarial setting. To fully demonstrate the effectiveness of our framework, we conduct large-scale experiments on multiple datasets including CIFAR-10 and SVHN using different models and defenses with our open-source platform AISafety. Overall, our paper aims to provide a comprehensive evaluation framework which could demonstrate detailed inspections of the model robustness, and we hope that our paper can inspire further improvement to the model robustness.
120 - Yuxing Han , Ziniu Wu , Peizhi Wu 2021
Cardinality estimation (CardEst) plays a significant role in generating high-quality query plans for a query optimizer in DBMS. In the last decade, an increasing number of advanced CardEst methods (especially ML-based) have been proposed with outstanding estimation accuracy and inference latency. However, there exists no study that systematically evaluates the quality of these methods and answer the fundamental problem: to what extent can these methods improve the performance of query optimizer in real-world settings, which is the ultimate goal of a CardEst method. In this paper, we comprehensively and systematically compare the effectiveness of CardEst methods in a real DBMS. We establish a new benchmark for CardEst, which contains a new complex real-world dataset STATS and a diverse query workload STATS-CEB. We integrate multiple most representative CardEst methods into an open-source database system PostgreSQL, and comprehensively evaluate their true effectiveness in improving query plan quality, and other important aspects affecting their applicability, ranging from inference latency, model size, and training time, to update efficiency and accuracy. We obtain a number of key findings for the CardEst methods, under different data and query settings. Furthermore, we find that the widely used estimation accuracy metric(Q-Error) cannot distinguish the importance of different sub-plan queries during query optimization and thus cannot truly reflect the query plan quality generated by CardEst methods. Therefore, we propose a new metric P-Error to evaluate the performance of CardEst methods, which overcomes the limitation of Q-Error and is able to reflect the overall end-to-end performance of CardEst methods. We have made all of the benchmark data and evaluation code publicly available at https://github.com/Nathaniel-Han/End-to-End-CardEst-Benchmark.
Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most widely used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this article, we provide a comprehensive survey of this new and continuously growing field of research, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for deep learning-based stereo for depth estimation research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا