Do you want to publish a course? Click here

A Comprehensive Evaluation Framework for Deep Model Robustness

473   0   0.0 ( 0 )
 Added by Aishan Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications. However, they are vulnerable to adversarial examples, which motivates the adversarial defense. By adopting simple evaluation metrics, most of the current defenses only conduct incomplete evaluations, which are far from providing comprehensive understandings of the limitations of these defenses. Thus, most proposed defenses are quickly shown to be attacked successfully, which result in the arm race phenomenon between attack and defense. To mitigate this problem, we establish a model robustness evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics, which could fully evaluate model robustness and provide deep insights into building robust models. With 23 evaluation metrics in total, our framework primarily focuses on the two key factors of adversarial learning (ie, data and model). Through neuron coverage and data imperceptibility, we use data-oriented metrics to measure the integrity of test examples; by delving into model structure and behavior, we exploit model-oriented metrics to further evaluate robustness in the adversarial setting. To fully demonstrate the effectiveness of our framework, we conduct large-scale experiments on multiple datasets including CIFAR-10 and SVHN using different models and defenses with our open-source platform AISafety. Overall, our paper aims to provide a comprehensive evaluation framework which could demonstrate detailed inspections of the model robustness, and we hope that our paper can inspire further improvement to the model robustness.



rate research

Read More

We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face accessories), the attackers system knowledge (about training data and learning architecture), goals (dodging or impersonation), and capability (tailored to individual inputs or across sets of these). We use FACESEC to study five face recognition systems in both closed-set and open-set settings, and to evaluate the state-of-the-art approach for defending against physically realizable attacks on these. We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks. Moreover, we observe that open-set face recognition systems are more vulnerable than closed-set systems under different types of attacks. The efficacy of attacks for other threat model variations, however, appears highly dependent on both the nature of perturbation and the neural network architecture. For example, attacks that involve adversarial face masks are usually more potent, even against adversarially trained models, and the ArcFace architecture tends to be more robust than the others.
83 - Bao Zhao , Xiaobo Chen , Xinyi Le 2019
3D local feature extraction and matching is the basis for solving many tasks in the area of computer vision, such as 3D registration, modeling, recognition and retrieval. However, this process commonly draws into false correspondences, due to noise, limited features, occlusion, incomplete surface and etc. In order to estimate accurate transformation based on these corrupted correspondences, numerous transformation estimation techniques have been proposed. However, the merits, demerits and appropriate application for these methods are unclear owing to that no comprehensive evaluation for the performance of these methods has been conducted. This paper evaluates eleven state-of-the-art transformation estimation proposals on both descriptor based and synthetic correspondences. On descriptor based correspondences, several evaluation items (including the performance on different datasets, robustness to different overlap ratios and the performance of these technique combined with Iterative Closest Point (ICP), different local features and LRF/A techniques) of these methods are tested on four popular datasets acquired with different devices. On synthetic correspondences, the robustness of these methods to varying percentages of correct correspondences (PCC) is evaluated. In addition, we also evaluate the efficiencies of these methods. Finally, the merits, demerits and application guidance of these tested transformation estimation methods are summarized.
Deep neural networks have been playing an essential role in many computer vision tasks including Visual Question Answering (VQA). Until recently, the study of their accuracy was the main focus of research but now there is a trend toward assessing the robustness of these models against adversarial attacks by evaluating their tolerance to varying noise levels. In VQA, adversarial attacks can target the image and/or the proposed main question and yet there is a lack of proper analysis of the later. In this work, we propose a flexible framework that focuses on the language part of VQA that uses semantically relevant questions, dubbed basic questions, acting as controllable noise to evaluate the robustness of VQA models. We hypothesize that the level of noise is positively correlated to the similarity of a basic question to the main question. Hence, to apply noise on any given main question, we rank a pool of basic questions based on their similarity by casting this ranking task as a LASSO optimization problem. Then, we propose a novel robustness measure, R_score, and two large-scale basic question datasets (BQDs) in order to standardize robustness analysis for VQA models.
An interesting development in automatic visual recognition has been the emergence of tasks where it is not possible to assign objective labels to images, yet still feasible to collect annotations that reflect human judgements about them. Machine learning-based predictors for these tasks rely on supervised training that models the behavior of the annotators, i.e., what would the average persons judgement be for an image? A key open question for this type of work, especially for applications where inconsistency with human behavior can lead to ethical lapses, is how to evaluate the epistemic uncertainty of trained predictors, i.e., the uncertainty that comes from the predictors model. We propose a Bayesian framework for evaluating black box predictors in this regime, agnostic to the predictors internal structure. The framework specifies how to estimate the epistemic uncertainty that comes from the predictor with respect to human labels by approximating a conditional distribution and producing a credible interval for the predictions and their measures of performance. The framework is successfully applied to four image classification tasks that use subjective human judgements: facial beauty assessment, social attribute assignment, apparent age estimation, and ambiguous scene labeling.
Most neural network pruning methods, such as filter-level and layer-level prunings, prune the network model along one dimension (depth, width, or resolution) solely to meet a computational budget. However, such a pruning policy often leads to excessive reduction of that dimension, thus inducing a huge accuracy loss. To alleviate this issue, we argue that pruning should be conducted along three dimensions comprehensively. For this purpose, our pruning framework formulates pruning as an optimization problem. Specifically, it first casts the relationships between a certain models accuracy and depth/width/resolution into a polynomial regression and then maximizes the polynomial to acquire the optimal values for the three dimensions. Finally, the model is pruned along the three optimal dimensions accordingly. In this framework, since collecting too much data for training the regression is very time-costly, we propose two approaches to lower the cost: 1) specializing the polynomial to ensure an accurate regression even with less training data; 2) employing iterative pruning and fine-tuning to collect the data faster. Extensive experiments show that our proposed algorithm surpasses state-of-the-art pruning algorithms and even neural architecture search-based algorithms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا