Do you want to publish a course? Click here

Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation

121   0   0.0 ( 0 )
 Added by Rong Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cardinality estimation (CardEst) plays a significant role in generating high-quality query plans for a query optimizer in DBMS. In the last decade, an increasing number of advanced CardEst methods (especially ML-based) have been proposed with outstanding estimation accuracy and inference latency. However, there exists no study that systematically evaluates the quality of these methods and answer the fundamental problem: to what extent can these methods improve the performance of query optimizer in real-world settings, which is the ultimate goal of a CardEst method. In this paper, we comprehensively and systematically compare the effectiveness of CardEst methods in a real DBMS. We establish a new benchmark for CardEst, which contains a new complex real-world dataset STATS and a diverse query workload STATS-CEB. We integrate multiple most representative CardEst methods into an open-source database system PostgreSQL, and comprehensively evaluate their true effectiveness in improving query plan quality, and other important aspects affecting their applicability, ranging from inference latency, model size, and training time, to update efficiency and accuracy. We obtain a number of key findings for the CardEst methods, under different data and query settings. Furthermore, we find that the widely used estimation accuracy metric(Q-Error) cannot distinguish the importance of different sub-plan queries during query optimization and thus cannot truly reflect the query plan quality generated by CardEst methods. Therefore, we propose a new metric P-Error to evaluate the performance of CardEst methods, which overcomes the limitation of Q-Error and is able to reflect the overall end-to-end performance of CardEst methods. We have made all of the benchmark data and evaluation code publicly available at https://github.com/Nathaniel-Han/End-to-End-CardEst-Benchmark.



rate research

Read More

Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models leads to a limited estimator that is prohibitively expensive to evaluate for range or wildcard predicates. To produce a truly usable estimator, we develop a Monte Carlo integration scheme on top of autoregressive models that can efficiently handle range queries with dozens of dimensions or more. Like classical synopses, our estimator summarizes the data without supervision. Unlike previous solutions, we approximate the joint data distribution without any independence assumptions. Evaluated on real-world datasets and compared against real systems and dominant families of techniques, our estimator achieves single-digit multiplicative error at tail, an up to 90$times$ accuracy improvement over the second best method, and is space- and runtime-efficient.
We study two classes of summary-based cardinality estimators that use statistics about input relations and small-size joins in the context of graph database management systems: (i) optimistic estimators that make uniformity and conditional independence assumptions; and (ii) the recent pessimistic estimators that use information theoretic linear programs. We begin by addressing the problem of how to make accurate estimates for optimistic estimators. We model these estimators as picking bottom-to-top paths in a cardinality estimation graph (CEG), which contains sub-queries as nodes and weighted edges between sub-queries that represent average degrees. We outline a space of heuristics to make an optimistic estimate in this framework and show that effective heuristics depend on the structure of the input queries. We observe that on acyclic queries and queries with small-size cycles, using the maximum-weight path is an effective technique to address the well known underestimation problem for optimistic estimators. We show that on a large suite of datasets and workloads, the accuracy of such estimates is up to three orders of magnitude more accurate in mean q-error than some prior heuristics that have been proposed in prior work. In contrast, we show that on queries with larger cycles these estimators tend to overestimate, which can partially be addressed by using minimum weight paths and more effectively by using an alternative CEG. We then show that CEGs can also model the recent pessimistic estimators. This surprising result allows us to connect two disparate lines of work on optimistic and pessimistic estimators, adopt an optimization from pessimistic estimators to optimistic ones, and provide insights into the pessimistic estimators, such as showing that there are alternative combinatorial solutions to the linear programs that define them.
251 - Ziniu Wu , Peilun Yang , Pei Yu 2021
Recently, the database management system (DBMS) community has witnessed the power of machine learning (ML) solutions for DBMS tasks. Despite their promising performance, these existing solutions can hardly be considered satisfactory. First, these ML-based methods in DBMS are not effective enough because they are optimized on each specific task, and cannot explore or understand the intrinsic connections between tasks. Second, the training process has serious limitations that hinder their practicality, because they need to retrain the entire model from scratch for a new DB. Moreover, for each retraining, they require an excessive amount of training data, which is very expensive to acquire and unavailable for a new DB. We propose to explore the transferabilities of the ML methods both across tasks and across DBs to tackle these fundamental drawbacks. In this paper, we propose a unified model MTMLF that uses a multi-task training procedure to capture the transferable knowledge across tasks and a pre-train fine-tune procedure to distill the transferable meta knowledge across DBs. We believe this paradigm is more suitable for cloud DB service, and has the potential to revolutionize the way how ML is used in DBMS. Furthermore, to demonstrate the predicting power and viability of MTMLF, we provide a concrete and very promising case study on query optimization tasks. Last but not least, we discuss several concrete research opportunities along this line of work.
Due to the outstanding capability of capturing underlying data distributions, deep learning techniques have been recently utilized for a series of traditional database problems. In this paper, we investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection. Answering this problem accurately and efficiently is essential to many data management applications, especially for query optimization. Moreover, in some applications the estimated cardinality is supposed to be consistent and interpretable. Hence a monotonic estimation w.r.t. the query threshold is preferred. We propose a novel and generic method that can be applied to any data type and distance function. Our method consists of a feature extraction model and a regression model. The feature extraction model transforms original data and threshold to a Hamming space, in which a deep learning-based regression model is utilized to exploit the incremental property of cardinality w.r.t. the threshold for both accuracy and monotonicity. We develop a training strategy tailored to our model as well as techniques for fast estimation. We also discuss how to handle updates. We demonstrate the accuracy and the efficiency of our method through experiments, and show how it improves the performance of a query optimizer.
Non-volatile memory (NVM) is an emerging technology, which has the persistence characteristics of large capacity storage devices(e.g., HDDs and SSDs), while providing the low access latency and byte-addressablity of traditional DRAM memory. This unique combination of features open up several new design considerations when building database management systems (DBMSs), such as replacing DRAM (as the main working space memory) or block devices (as the persistent storage), or complementing both at the same time for several DBMS components (such as access methods,storage engine, buffer management, logging/recovery, etc). However, interacting with NVM requires changes to application software to best use the device (e.g. mmap and clflush of small cache lines instead of write and fsync of large page buffers). Before introducing (potentially major) code changes to the DBMS for NVM, developers need a clear understanding of NVM performance in various conditions to help make better design choices. In this paper, we provide extensive performance evaluations conducted with a recently released NVM device, Intel Optane DC Persistent Memory (PMem), under different configurations with several micro-benchmark tools. Further, we evaluate OLTP and OLAP database workloads (i.e., TPC-C and TPC-H) with Microsoft SQL Server 2019 when using the NVM device as an in-memory buffer pool or persistent storage. From the lessons learned we share some recommendations for future DBMS design with PMem, e.g.simple hardware or software changes are not enough for the best use of PMem in DBMSs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا