Do you want to publish a course? Click here

A novel linearized and momentum-preserving Fourier pseudo-spectral scheme for the Rosenau-Korteweg de Vries equation

74   0   0.0 ( 0 )
 Added by Chaolong Jiang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we design a novel linearized and momentum-preserving Fourier pseudo-spectral scheme to solve the Rosenau-Korteweg de Vries equation. With the aid of a new semi-norm equivalence between the Fourier pseudo-spectral method and the finite difference method, a prior bound of the numerical solution in discrete $L^{infty}$-norm is obtained from the discrete momentum conservation law. Subsequently, based on the energy method and the bound of the numerical solution, we show that, without any restriction on the mesh ratio, the scheme is convergent with order $O(N^{-s}+tau^2)$ in discrete $L^infty$-norm, where $N$ is the number of collocation points used in the spectral method and $tau$ is the time step. Numerical results are addressed to confirm our theoretical analysis.



rate research

Read More

88 - Kai Yang 2021
This paper proposes a new class of arbitarily high-order conservative numerical schemes for the generalized Korteweg-de Vries (KdV) equation. This approach is based on the scalar auxiliary variable (SAV) method. The equation is reformulated into an equivalent system by introducing a scalar auxiliary variable, and the energy is reformulated into a sum of two quadratic terms. Therefore, the quadratic preserving Runge-Kutta method will preserve both the mass and the reformulated energy in the discrete time flow. With the Fourier pseudo-spectral spatial discretization, the scheme conserves the first and third invariant quantities (momentum and energy) exactly in the fully discrete sense. The discrete mass possesses the precision of the spectral accuracy.
In this paper, we develop a new class of high-order energy-preserving schemes for the Korteweg-de Vries equation based on the quadratic auxiliary variable technique, which can conserve the original energy of the system. By introducing a quadratic auxiliary variable, the original system is reformulated into an equivalent form with a modified quadratic energy, where the way of the introduced variable naturally produces a quadratic invariant of the new system. A class of Runge-Kutta methods satisfying the symplectic condition is applied to discretize the reformulated model in time, arriving at arbitrarily high-order schemes, which naturally conserve the modified quadratic energy and the produced quadratic invariant. Under the consistent initial condition, the proposed methods are rigorously proved to maintain the original energy conservation law of the Korteweg-de Vries equation. In order to match the high order precision of time, the Fourier pseudo-spectral method is employed for spatial discretization, resulting in fully discrete energy-preserving schemes. To solve the proposed nonlinear schemes effectively, we present a very efficient practically-structure-preserving iterative technique, which not only greatly saves the calculation cost, but also achieves the purpose of practically preserving structure. Ample numerical results are addressed to confirm the expected order of accuracy, conservative property and efficiency of the proposed schemes. This new class of numerical strategies is rather general so that they can be readily generalized for any conservative systems with a polynomial energy.
190 - A.M. Kamchatnov 2015
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained for each case. The essential difference between them is illustrated by an example of so-called `generalized Korteweg-de Vries equation. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.
In this paper we consider two numerical scheme based on trapezoidal rule in time for the linearized KdV equation in one space dimension. The goal is to derive some suitable artificial boundary conditions for these two full discretization using Z-transformation. We give some numerical benchmark examples from the literature to illustrate our findings.
The primary challenge in solving kinetic equations, such as the Vlasov equation, is the high-dimensional phase space. In this context, dynamical low-rank approximations have emerged as a promising way to reduce the high computational cost imposed by such problems. However, a major disadvantage of this approach is that the physical structure of the underlying problem is not preserved. In this paper, we propose a dynamical low-rank algorithm that conserves mass, momentum, and energy as well as the corresponding continuity equations. We also show how this approach can be combined with a conservative time and space discretization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا