Do you want to publish a course? Click here

Towards Quasi-Transverse Momentum Dependent PDFs Computable on the Lattice

75   0   0.0 ( 0 )
 Added by Markus Ebert
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Transverse momentum dependent parton distributions (TMDPDFs) which appear in factorized cross sections involve infinite Wilson lines with edges on or close to the light-cone. Since these TMDPDFs are not directly calculable with a Euclidean path integral in lattice QCD, we study the construction of quasi-TMDPDFs with finite-length spacelike Wilson lines that are amenable to such calculations. We define an infrared consistency test to determine which quasi-TMDPDF definitions are related to the TMDPDF, by carrying out a one-loop study of infrared logarithms of transverse position $b_Tsim Lambda_{rm QCD}^{-1}$, which must agree between them. This agreement is a necessary condition for the two quantities to be related by perturbative matching. TMDPDFs necessarily involve combining a hadron matrix element, which nominally depends on a single light-cone direction, with soft matrix elements that necessarily depend on two light-cone directions. We show at one loop that the simplest definitions of the quasi hadron matrix element, the quasi soft matrix element, and the resulting quasi-TMDPDF all fail the infrared consistency test. Ratios of impact parameter quasi-TMDPDFs still provide nontrivial information about the TMDPDFs, and are more robust since the soft matrix elements cancel. We show at one loop that such quasi ratios can be matched to ratios of the corresponding TMDPDFs. We also introduce a modified bent quasi soft matrix element which yields a quasi-TMDPDF that passes the consistency test with the TMDPDF at one loop, and discuss potential issues at higher orders.



rate research

Read More

We compute the quark and gluon transverse momentum dependent parton distribution functions at next-to-next-to-next-to-leading order (N$^3$LO) in perturbative QCD. Our calculation is based on an expansion of the differential Higgs boson and Drell-Yan production cross sections about their collinear limit. This method allows us to employ cutting edge techniques for the computation of cross sections to extract the universal building blocks in question. The corresponding perturbative matching kernels for all channels are expressed in terms of simple harmonic polylogarithms up to weight five. As a byproduct, we confirm a previous computation of the soft function for transverse momentum factorization at N$^3$LO. Our results are the last missing ingredient to extend the $q_T$ subtraction methods to N$^3$LO and to obtain resummed $q_T$ spectra at N$^3$LL$^prime$ accuracy both for gluon as well as for quark initiated processes.
144 - A. V. Radyushkin 2017
We show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large $p_3 sim 3$ GeV momenta to get reasonably close to the PDF limit. As an alternative approach, we propose to use pseudo-PDFs $P(x, z_3^2)$ that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions $M ( u, z_3^2)$, the functions of the Ioffe time $ u = p_3 z_3$ and the distance parameter $z_3^2$ with respect to which it displays perturbative evolution for small $z_3$. In this form, one may divide out the $z_3^2$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The $ u$-dependence remains intact and determines the shape of PDFs.
185 - I. O. Cherednikov 2012
We consider the problems of gauge invariance, path-dependence and treatment of overlapping UV/rapidity divergences peculiar to the transverse-momentum dependent parton distribution functions (TMDs). For different formulations of the TMDs available in the literature, we check the consistency of the TMD matrix elements with the collinear parton distribution functions possessing the well-known operator structure. Comparative on- and off-light-cone layout of the Wilson lines which secure the gauge-invariance of the TMDs is presented and briefly discussed.
137 - T. J. Hobbs 2017
The recently proposed large momentum effective theory (LaMET) of Ji has led to a burst of activity among lattice practitioners to perform and control the first pioneering calculations of the quasi-PDFs of the nucleon. These calculations represent approximations to the standard PDFs defined as correlation functions of fields with lightlike separation, being instead correlations along a longitudinal direction of the operator $gamma^z$; as such, they differ from standard PDFs by power-suppressed $1 big/ p^2_z$ corrections, becoming exact in the limit $p_z to infty$. Investigating the systematics of this behavior thus becomes crucial to understanding the validity of LaMET calculations. While this has been done using models for the nucleon, an analogous dedicated study has not been carried out for the $pi$ and $rho$ quark distribution functions. Using a constituent quark model, a systematic calculation is performed to estimate the size and $x$ dependence of the finite-$p_z$ effects in these quasi-PDFs, finding them to be potentially tamer for lighter mesons than for the collinear quasi-PDFs of the nucleon.
We reconsider the evolution equations for transverse momentum dependent distributions recently proposed by us and recast them in a form which allows the comparison with results recently appeared in the literature. We show under which conditions the obtained results might be consistent with each other.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا