No Arabic abstract
In previous work, we develop a generalized Waldhausen $S_{bullet}$-construction whose input is an augmented stable double Segal space and whose output is a unital 2-Segal space. Here, we prove that this construction recovers the previously known $S_{bullet}$-constructions for exact categories and for stable and exact $(infty,1)$-categories, as well as the relative $S_{bullet}$-construction for exact functors.
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, by showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
We give an explicit point-set construction of the Dennis trace map from the $K$-theory of endomorphisms $Kmathrm{End}(mathcal{C})$ to topological Hochschild homology $mathrm{THH}(mathcal{C})$ for any spectral Waldhausen category $mathcal{C}$. We describe the necessary technical foundations, most notably a well-behaved model for the spectral category of diagrams in $mathcal{C}$ indexed by an ordinary category via the Moore end. This is applied to define a version of Waldhausens $S_{bullet}$-construction for spectral Waldhausen categories, which is central to this account of the Dennis trace map. Our goals are both convenience and transparency---we provide all details except for a proof of the additivity theorem for $mathrm{THH}$, which is taken for granted---and the exposition is concerned not with originality of ideas, but rather aims to provide a useful resource for learning about the Dennis trace and its underlying machinery.
We prove that the set of concordance classes of sections of an infinity-sheaf on a manifold is representable, extending a theorem of Madsen and Weiss. This is reminiscent of an h-principle in which the role of isotopy is played by concordance. As an application, we offer an answer to the question: what does the classifying space of a Segal space classify?
Picard 2-categories are symmetric monoidal 2-categories with invertible 0-, 1-, and 2-cells. The classifying space of a Picard 2-category $mathcal{D}$ is an infinite loop space, the zeroth space of the $K$-theory spectrum $Kmathcal{D}$. This spectrum has stable homotopy groups concentrated in levels 0, 1, and 2. In this paper, we describe part of the Postnikov data of $Kmathcal{D}$ in terms of categorical structure. We use this to show that there is no strict skeletal Picard 2-category whose $K$-theory realizes the 2-truncation of the sphere spectrum. As part of the proof, we construct a categorical suspension, producing a Picard 2-category $Sigma C$ from a Picard 1-category $C$, and show that it commutes with $K$-theory in that $KSigma C$ is stably equivalent to $Sigma K C$.