Do you want to publish a course? Click here

Classifying spaces of infinity-sheaves

107   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the set of concordance classes of sections of an infinity-sheaf on a manifold is representable, extending a theorem of Madsen and Weiss. This is reminiscent of an h-principle in which the role of isotopy is played by concordance. As an application, we offer an answer to the question: what does the classifying space of a Segal space classify?



rate research

Read More

154 - Rune Haugseng 2013
We prove a rectification theorem for enriched infinity-categories: If V is a nice monoidal model category, we show that the homotopy theory of infinity-categories enriched in V is equivalent to the familiar homotopy theory of categories strictly enriched in V. It follows, for example, that infinity-categories enriched in spectra or chain complexes are equivalent to spectral categories and dg-categories. A similar method gives a comparison result for enriched Segal categories, which implies that the homotopy theories of n-categories and (infinity,n)-categories defined by iterated infinity-categorical enrichment are equivalent to those of more familia
247 - Tilman Bauer , Assaf Libman 2010
Given an operad A of topological spaces, we consider A-monads in a topological category C . When A is an A-infinity-operad, any A-monad K : C -> C can be thought of as a monad up to coherent homotopies. We define the completion functor with respect to an A-infinity-monad and prove that it is an A-infinity-monad itself.
We define a right Cartan-Eilenberg structure on the category of Kans combinatorial spectra, and the category of sheaves of such spectra, assuming some conditions. In both structures, we use the geometric concept of homotopy equivalence as the strong equivalence. In the case of sheaves, we use local equivalence as the weak equivalence. This paper is the first step in a larger-scale program of investigating sheaves of spectra from a geometric viewpoint.
Let G be a compact Lie group. By work of Chataur and Menichi, the homology of the space of free loops in the classifying space of G is known to be the value on the circle in a homological conformal field theory. This means in particular that it admits operations parameterized by homology classes of classifying spaces of diffeomorphism groups of surfaces. Here we present a radical extension of this result, giving a new construction in which diffeomorphisms are replaced with homotopy equivalences, and surfaces with boundary are replaced with arbitrary spaces homotopy equivalent to finite graphs. The result is a novel kind of field theory which is related to both the diffeomorphism groups of surfaces and the automorphism groups of free groups with boundaries. Our work shows that the algebraic structures in string topology of classifying spaces can be brought into line with, and in fact far exceed, those available in string topology of manifolds. For simplicity, we restrict to the characteristic 2 case. The generalization to arbitrary characteristic will be addressed in a subsequent paper.
214 - Danny Sugrue 2018
The Cantor-Bendixson rank of a topological space X is a measure of the complexity of the topology of X. The Cantor-Bendixson rank is most interesting when the space is profinite: Hausdorff, compact and totally disconnected. We will see that the injective dimension of the Abelian category of sheaves of rational vector spaces over a profinite space is determined by the Cantor-Bendixson rank of the space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا