No Arabic abstract
We consider two qubits interacting with a common bosonic bath, but not directly between themselves. We derive the (bipartite) entanglement generation conditions for Gaussian non-Markovian dynamical maps and show that they are similar as in the Markovian regime; however, they depend on different physical coefficients and hold on different time scales. Indeed, for small times, in the non-Markovian regime entanglement is possibly generated on a shorter time scale ($propto t^2$) than in the Markovian one ($propto t$). Moreover, although the singular coupling limit of non-Markovian dynamics yields Markovian ones, we show that the same limit does not lead from non-Markovian entanglement generation conditions to Markovian ones. Also, the entanglement generation conditions do not depend on the initial time for non-Markovian open dynamics resulting from couplings to bosonic Gaussian baths, while they may depend on time for open dynamics originated by couplings to classical, stochastic Gaussian environments.
The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental for the quantum properties of the system and leads to decoherence. However, sometimes a coherent partial exchange of information takes place between the system and the environment and the dynamics of the open system becomes non-Markovian. In this article we study discrete open quantum system dynamics where single evolution step consist of local unitary transformation on the open system followed by a coupling unitary between the system and the environment. We implement experimentally a local control protocol for controlling the transition from Markovian to non-Markovian dynamics.
In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of hidden quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole parameter space, reveals a wide range of different regimes, ranging from strongly non-Markovian to Markovian dynamics. In contrast to analytical models, all non-Markovianity measures and criteria have to be applied to data with fluctuations and statistical uncertainties. We discuss the practical usefulness of the different approaches.
We study the exact decoherence dynamics of the entangled squeezed state of two single-mode optical fields interacting with two independent and uncorrelated environments. We analyze in detail the non-Markovian effects on the entanglement evolution of the initially entangled squeezed state for different environmental correlation time scales. We find that the environments have dual actions on the system: backaction and dissipation. In mparticular, when the environmental correlation time scale is comparable to the time scale for significant change in the system, the backaction would counteract the dissipative effect. Interestingly, this results in the survival of some residual entanglement in the final steady state.
We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influences on the entanglement dynamics due to the sensitive time-dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case.