Do you want to publish a course? Click here

Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics

235   0   0.0 ( 0 )
 Added by Adeline Orieux
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of hidden quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.



rate research

Read More

We consider two qubits interacting with a common bosonic bath, but not directly between themselves. We derive the (bipartite) entanglement generation conditions for Gaussian non-Markovian dynamical maps and show that they are similar as in the Markovian regime; however, they depend on different physical coefficients and hold on different time scales. Indeed, for small times, in the non-Markovian regime entanglement is possibly generated on a shorter time scale ($propto t^2$) than in the Markovian one ($propto t$). Moreover, although the singular coupling limit of non-Markovian dynamics yields Markovian ones, we show that the same limit does not lead from non-Markovian entanglement generation conditions to Markovian ones. Also, the entanglement generation conditions do not depend on the initial time for non-Markovian open dynamics resulting from couplings to bosonic Gaussian baths, while they may depend on time for open dynamics originated by couplings to classical, stochastic Gaussian environments.
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of hidden entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.
Entanglement plays a central role in the field of quantum information science. It is well known that the degree of entanglement cannot be increased under local operations. Here, we show that the concurrence of a bipartite entangled state can be increased under the local PT -symmetric operation. This violates the property of entanglement monotonicity. We also use the Bell-CHSH and steering inequalities to explore this phenomenon.
We provide an experimental study of the relationship between the action of different classical noises on the dephasing dynamics of a two-level system and the non-Markovianity of the quantum dynamics. The two-level system is encoded in the photonic polarization degrees of freedom and the action of the noise is obtained via a spatial light modulator, thus allowing for an easy engineering of different random environments. The quantum non-Markovianity of the dynamics driven by classical Markovian and non-Markovian noise, both Gaussian and non-Gaussian, is studied by means of the trace distance. Our study clearly shows the different nature of the notion of non-Markovian classical process and non-Markovian quantum dynamics.
234 - Jun-Hong An , Wei-Min Zhang 2007
We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influences on the entanglement dynamics due to the sensitive time-dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا