The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental for the quantum properties of the system and leads to decoherence. However, sometimes a coherent partial exchange of information takes place between the system and the environment and the dynamics of the open system becomes non-Markovian. In this article we study discrete open quantum system dynamics where single evolution step consist of local unitary transformation on the open system followed by a coupling unitary between the system and the environment. We implement experimentally a local control protocol for controlling the transition from Markovian to non-Markovian dynamics.
We consider two qubits interacting with a common bosonic bath, but not directly between themselves. We derive the (bipartite) entanglement generation conditions for Gaussian non-Markovian dynamical maps and show that they are similar as in the Markovian regime; however, they depend on different physical coefficients and hold on different time scales. Indeed, for small times, in the non-Markovian regime entanglement is possibly generated on a shorter time scale ($propto t^2$) than in the Markovian one ($propto t$). Moreover, although the singular coupling limit of non-Markovian dynamics yields Markovian ones, we show that the same limit does not lead from non-Markovian entanglement generation conditions to Markovian ones. Also, the entanglement generation conditions do not depend on the initial time for non-Markovian open dynamics resulting from couplings to bosonic Gaussian baths, while they may depend on time for open dynamics originated by couplings to classical, stochastic Gaussian environments.
We investigate what a snapshot of a quantum evolution - a quantum channel reflecting open system dynamics - reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of `Markovianity is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.
We study the analytically solvable Ising model of a single qubit system coupled to a spin bath. The purpose of this study is to analyze and elucidate the performance of Markovian and non-Markovian master equations describing the dynamics of the system qubit, in comparison to the exact solution. We find that the time-convolutionless master equation performs particularly well up to fourth order in the system-bath coupling constant, in comparison to the Nakajima-Zwanzig master equation. Markovian approaches fare poorly due to the infinite bath correlation time in this model. A recently proposed post-Markovian master equation performs comparably to the time-convolutionless master equation for a properly chosen memory kernel, and outperforms all the approximation methods considered here at long times. Our findings shed light on the applicability of master equations to the description of reduced system dynamics in the presence of spin-baths.
The dynamics of two interacting spins coupled to separate bosonic baths is studied. An analytical solution in Born approximation for arbitrary spectral density functions of the bosonic environments is found. It is shown that in the non-Markovian cases concurrence lives longer or reaches greater values.
Employing the quadratic fermionic Hamiltonians for the collective and internal subsystems with a linear coupling, we studied the role of fermionic statistics on the dynamics of the collective motion. The transport coefficients are discussed as well as the associated fluctuation-dissipation relation. Due to different nature of the particles, the path to equilibrium is slightly affected. However, in the weak coupling regime, the time-scale for approaching equilibrium is found to be globally unchanged. The Pauli-blocking effect can modify the usual picture in open quantum system. In some limits, contrary to boson, this effect can strongly hinder the influence of the bath by blocking the interacting channels.