Do you want to publish a course? Click here

Blockchain in Global Supply Chains and Cross Border Trade: A Critical Synthesis of the State-of-the-Art, Challenges and Opportunities

102   0   0.0 ( 0 )
 Added by Yanling Chang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Blockchain in supply chain management is expected to boom over the next five years. It is estimated that the global blockchain supply chain market would grow at a compound annual growth rate of 87% and increase from $45 million in 2018 to $3,314.6 million by 2023. Blockchain will improve business for all global supply chain stakeholders by providing enhanced traceability, facilitating digitisation, and securing chain-of-custody. This paper provides a synthesis of the existing challenges in global supply chain and trade operations, as well as the relevant capabilities and potential of blockchain. We further present leading pilot initiatives on applying blockchains to supply chains and the logistics industry to fulfill a range of needs. Finally, we discuss the implications of blockchain on customs and governmental agencies, summarize challenges in enabling the wide scale deployment of blockchain in global supply chain management, and identify future research directions.



rate research

Read More

We study on topological properties of global supply chain network in terms of degree distribution, hierarchical structure, and degree-degree correlation in the global supply chain network. The global supply chain data is constructed by collecting various company data from the web site of Standard & Poors Capital IQ platform in 2018. The in- and out-degree distributions are characterized by a power law with in-degree exponent = 2.42 and out-degree exponent = 2.11. The clustering coefficient decays as power law with an exponent = 0.46. The nodal degree-degree correlation indicates the absence of assortativity. The Bow-tie structure of GWCC reveals that the OUT component is the largest and it consists 41.1% of total firms. The GSCC component comprises 16.4% of total firms. We observe that the firms in the upstream or downstream sides are mostly located a few steps away from the GSCC. Furthermore, we uncover the community structure of the network and characterize them according to their location and industry classification. We observe that the largest community consists of consumer discretionary sector mainly based in the US. These firms belong to the OUT component in the bow-tie structure of the global supply chain network. Finally, we confirm the validity for propositions S1 (short path length), S2 (power-law degree distribution), S3 (high clustering coefficient), S4 (fit-gets-richer growth mechanism), S5 (truncation of power-law degree distribution), and S7 (community structure with overlapping boundaries) in the global supply chain network.
The increasing integration of world economies, which organize in complex multilayer networks of interactions, is one of the critical factors for the global propagation of economic crises. We adopt the network science approach to quantify shock propagation on the global trade-investment multiplex network. To this aim, we propose a model that couples a Susceptible-Infected-Recovered epidemic spreading dynamics, describing how economic distress propagates between connected countries, with an internal contagion mechanism, describing the spreading of such economic distress within a given country. At the local level, we find that the interplay between trade and financial interactions influences the vulnerabilities of countries to shocks. At the large scale, we find a simple linear relation between the relative magnitude of a shock in a country and its global impact on the whole economic system, albeit the strength of internal contagion is country-dependent and the intercountry propagation dynamics is non-linear. Interestingly, this systemic impact can be predicted on the basis of intra-layer and inter-layer scale factors that we name network multipliers, that are independent of the magnitude of the initial shock. Our model sets-up a quantitative framework to stress-test the robustness of individual countries and of the world economy to propagating crashes.
We show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existence of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories. Besides outlining the technical features and advantages of the method, we describe a wide range of results arising from the analysis of the obtained rankings and we benchmark these observations against those established with other economical parameters. These comparisons allow to partition countries and products into various main typologies, with well-revealed characterizing features. Our methods have wide applicability to general problems of ranking in bipartite networks.
Supply chain applications operate in a multi-stakeholder setting, demanding trust, provenance, and transparency. Blockchain technology provides mechanisms to establish a decentralized infrastructure involving multiple stakeholders. Such mechanisms make the blockchain technology ideal for multi-stakeholder supply chain applications. This chapter introduces the characteristics and requirements of the supply chain and explains how blockchain technology can meet the demands of supply chain applications. In particular, this chapter discusses how data and trust management can be established using blockchain technology. The importance of scalability and interoperability in a blockchain-based supply chain is highlighted to help the stakeholders make an informed decision. The chapter concludes by underscoring the design challenges and open opportunities in the blockchain-based supply chain domain.
In this paper, we construct a decentralized clearing mechanism which endogenously and automatically provides a claims resolution procedure. This mechanism can be used to clear a network of obligations through blockchain. In particular, we investigate default contagion in a network of smart contracts cleared through blockchain. In so doing, we provide an algorithm which constructs the blockchain so as to guarantee the payments can be verified and the miners earn a fee. We, additionally, consider the special case in which the blocks have unbounded capacity to provide a simple equilibrium clearing condition for the terminal net worths; existence and uniqueness are proven for this system. Finally, we consider the optimal bidding strategies for each firm in the network so that all firms are utility maximizers with respect to their terminal wealths. We first look for a mixed Nash equilibrium bidding strategies, and then also consider Pareto optimal bidding strategies. The implications of these strategies, and more broadly blockchain, on systemic risk are considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا