No Arabic abstract
Supply chain applications operate in a multi-stakeholder setting, demanding trust, provenance, and transparency. Blockchain technology provides mechanisms to establish a decentralized infrastructure involving multiple stakeholders. Such mechanisms make the blockchain technology ideal for multi-stakeholder supply chain applications. This chapter introduces the characteristics and requirements of the supply chain and explains how blockchain technology can meet the demands of supply chain applications. In particular, this chapter discusses how data and trust management can be established using blockchain technology. The importance of scalability and interoperability in a blockchain-based supply chain is highlighted to help the stakeholders make an informed decision. The chapter concludes by underscoring the design challenges and open opportunities in the blockchain-based supply chain domain.
A variety of innovative software solutions, addressing product anti-counterfeiting and record provenance of the wider supply chain industry, have been implemented. However, these solutions have been developed with centralized system architecture which could be susceptible to malicious modifications on states of product records and various potential security attacks leading to system failure and downtime. Blockchain technology has been enabling decentralized trust with a network of distributed peer nodes to maintain consistent shared states via a decentralized consensus reached, with which an idea of developing decentralized and reliable solutions has been basing on. A Decentralized NFC-Enabled Anti-Counterfeiting System (dNAS) was therefore proposed and developed, decentralizing a legacy anti-counterfeiting system of supply chain industry utilizing enterprise blockchain protocols and enterprise consortium, to facilitate trustworthy data provenance retrieval, verification and management, as well as strengthening capability of product anti-counterfeiting and traceability in supply chain industry. The adoption of enterprise blockchain protocols and implementations has been surging in supply chain industry given its advantages in scalability, governance and compatibility with existing supply chain systems and networks, but development and adoption of decentralized solutions could also impose additional implications to supply chain integrity, in terms of security, privacy and confidentiality. In this research, an empirical analysis performed against decentralized solutions, including dNAS, summarizes the effectiveness, limitations and future opportunities of developing decentralized solutions built around existing enterprise blockchain protocols and implementations for supply chain anti-counterfeiting and traceability.
Blockchain offers traceability and transparency to supply chain event data and hence can help overcome many challenges in supply chain management such as: data integrity, provenance and traceability. However, data privacy concerns such as the protection of trade secrets have hindered adoption of blockchain technology. Although consortium blockchains only allow authorised supply chain entities to read/write to the ledger, privacy preservation of trade secrets cannot be ascertained. In this work, we propose a privacy-preservation framework, PrivChain, to protect sensitive data on blockchain using zero knowledge proofs. PrivChain provides provenance and traceability without revealing any sensitive information to end-consumers or supply chain entities. Its novelty stems from: a) its ability to allow data owners to protect trade related information and instead provide proofs on the data, and b) an integrated incentive mechanism for entities providing valid proofs over provenance data. In particular, PrivChain uses Zero Knowledge Range Proofs (ZKRPs), an efficient variant of ZKPs, to provide origin information without disclosing the exact location of a supply chain product. Furthermore, the framework allows to compute proofs and commitments off-line, decoupling the computational overhead from blockchain. The proof verification process and incentive payment initiation are automated using blockchain transactions, smart contracts, and events. A proof of concept implementation on Hyperledger Fabric reveals a minimal overhead of using PrivChain for blockchain enabled supply chains.
Innovative solutions addressing product anti-counterfeiting and record provenance have been deployed across todays internationally spanning supply chain networks. These product anti-counterfeiting solutions are developed and implemented with centralized system architecture relying on centralized authorities or any form of intermediaries. Vulnerabilities of centralized product anti-counterfeiting solutions could possibly lead to system failure or susceptibility of malicious modifications performed on product records or various potential attacks to the system components by dishonest participant nodes traversing along the supply chain. Blockchain technology has progressed from merely with a use case of immutable ledger for cryptocurrency transactions to a programmable interactive environment of developing decentralized and reliable applications addressing different use cases globally. In this research, so as to facilitate trustworthy data provenance retrieval, verification and management, as well as strengthening capability of product anti-counterfeiting, key areas of decentralization and feasible mechanisms of developing decentralized and distributed product anti-counterfeiting and traceability ecosystems utilizing blockchain technology, are identified via a series of security and threat analyses performed mainly against NFC-Enabled Anti-Counterfeiting System (NAS) which is one of the solutions currently implemented in the industry with centralized architecture. A set of fundamental system requirements are set out for developing a blockchain-enabled autonomous and decentralized solution for supply chain anti-counterfeiting and traceability, as a secure and immutable scientific data provenance tracking and management platform in which provenance records, providing compelling properties on data integrity of luxurious goods, are recorded and verified automatically, for supply chain industry.
Supply chain network data is a valuable asset for businesses wishing to understand their ethical profile, security of supply, and efficiency. Possession of a dataset alone however is not a sufficient enabler of actionable decisions due to incomplete information. In this paper, we present a graph representation learning approach to uncover hidden dependency links that focal companies may not be aware of. To the best of our knowledge, our work is the first to represent a supply chain as a heterogeneous knowledge graph with learnable embeddings. We demonstrate that our representation facilitates state-of-the-art performance on link prediction of a global automotive supply chain network using a relational graph convolutional network. It is anticipated that our method will be directly applicable to businesses wishing to sever links with nefarious entities and mitigate risk of supply failure. More abstractly, it is anticipated that our method will be useful to inform representation learning of supply chain networks for downstream tasks beyond link prediction.
Services computing can offer a high-level abstraction to support diverse applications via encapsulating various computing infrastructures. Though services computing has greatly boosted the productivity of developers, it is faced with three main challenges: privacy and security risks, information silo, and pricing mechanisms and incentives. The recent advances of blockchain bring opportunities to address the challenges of services computing due to its build-in encryption as well as digital signature schemes, decentralization feature, and intrinsic incentive mechanisms. In this paper, we present a survey to investigate the integration of blockchain with services computing. The integration of blockchain with services computing mainly exhibits merits in two aspects: i) blockchain can potentially address key challenges of services computing and ii) services computing can also promote blockchain development. In particular, we categorize the current literature of services computing based on blockchain into five types: services creation, services discovery, services recommendation, services composition, and services arbitration. Moreover, we generalize Blockchain as a Service (BaaS) architecture and summarize the representative BaaS platforms. In addition, we also outline open issues of blockchain-based services computing and BaaS.