Do you want to publish a course? Click here

Optical properties of thin-film vanadium dioxide from the visible to the far infrared

84   0   0.0 ( 0 )
 Added by Mikhail Kats
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The insulator-to-metal transition (IMT) in vanadium dioxide (VO2) can enable a variety of optics applications, including switching and modulation, optical limiting, and tuning of optical resonators. Despite the widespread interest in optics, the optical properties of VO2 across its IMT are scattered throughout the literature, and are not available in some wavelength regions. We characterized the complex refractive index of VO2 thin films across the IMT for free-space wavelengths from 300 nm to 30 {mu}m, using broadband spectroscopic ellipsometry, reflection spectroscopy, and the application of effective-medium theory. We studied VO2 thin films of different thickness, on two different substrates (silicon and sapphire), and grown using different synthesis methods (sputtering and sol gel). While there are differences in the optical properties of VO2 synthesized under different conditions, they are relatively minor compared to the change resulting from the IMT, most notably in the ~2 - 11 {mu}m range where the insulating phase of VO2 has relatively low optical loss. We found that the macroscopic optical properties of VO2 are much more robust to sample-to-sample variation compared to the electrical properties, making the refractive-index datasets from this article broadly useful for modeling and design of VO2-based optical and optoelectronic components.



rate research

Read More

Abstract: An induced-transmission filter (ITF) uses an ultrathin layer of metal positioned at an electric-field node within a dielectric thin-film bandpass filter to select one transmission band while suppressing other transmission bands that would have been present without the metal layer. Here, we introduce a switchable mid-infrared ITF where the metal film can be switched on and off, enabling the modulation of the filter response from single-band to multiband. The switching is enabled by a deeply subwavelength film of vanadium dioxide (VO2), which undergoes a reversible insulator-to-metal phase transition. We designed and experimentally demonstrated an ITF that can switch between two states: one broad passband across the long-wave infrared (LWIR, 8 - 12 um) and one narrow passband at ~8.8 um. Our work generalizes the ITF -- previously a niche type of bandpass filter -- into a new class of tunable devices. Furthermore, our unique fabrication process -- which begins with thin-film VO2 on a suspended membrane -- enables the integration of VO2 into any thin-film assembly that is compatible with physical vapor deposition (PVD) processes, and is thus a new platform for realizing tunable thin-film filters.
Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limits the threshold power of on-chip $chi^{(2)}$ OPO. Here we report the first on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase matched, high-quality microring resonator, whose threshold power ($sim$30 $mu$W) is 400 times lower than that in previous $chi^{(2)}$ integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained at a pump power of 93 $mu$W. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase matching and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides an potential platform for realizing photonic neural networks.
High performance metasurfaces for thermal radiative cooling applications can be identified using computational optimization methods. This work has identified an easy-to-fabricate temperature phase transition VO2 nanowire array laid atop dielectric BaF2 Fabry-Perot cavity-on-metal with total coating thickness of 2 um. This optimized structure has ability to self-adaptively switch between high reflectance at low temperature to high emissivity at high temperature in the broad thermal infrared spectrum. This design demonstrates exceptional turn-down figure-of-merit compared to previously realized configurations utilizing VO2 metasurfaces and multilayers. The mechanism is achieved with a sub-wavelength nanowire array effective medium that switches between anti-reflecting gradient coating and Fabry-Perot interference. This thin metasurface coating could impact self-cooling of the solar cells, batteries, and electrical devices where risk presents at high temperatures.
Phase competition in correlated oxides offers tantalizing opportunities as many intriguing physical phenomena occur near the phase transitions. Owing to a sharp metal-insulator transition (MIT) near room temperature, correlated vanadium dioxide (VO2) exhibits a strong competition between insulating and metallic phases that is important for practical applications. However, the phase boundary undergoes strong modification when strain is involved, yielding complex phase transitions. Here, we report the emergence of the nanoscale M2 phase domains in VO2 epitaxial films under anisotropic strain relaxation. The phase states of the films are imaged by multi-length-scale probes, detecting the structural and electrical properties in individual local domains. Competing evolution of the M1 and M2 phases indicates a critical role of lattice-strain on both the stability of the M2 Mott phase and the energetics of the MIT in VO2 films. This study demonstrates how strain engineering can be utilized to design phase states, which allow deliberate control of MIT behavior at the nanoscale in epitaxial VO2 films.
105 - Di Zhu , Linbo Shao , Mengjie Yu 2021
Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell phones. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover -- from basic principles to the state of the art -- the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا