Do you want to publish a course? Click here

Martingale Hardy-Amalgam Spaces: Atomic decompositions and duality

159   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce the notion of martingale Hardy-amalgam spaces: $ H^s_{p,q},,,mathcal{Q}_{p,q}$ and $mathcal{P}_{p,q}$. We present two atomic decompositions for these spaces. The dual space of $H^s_{p,q}$ for $0<ple qle 1$ is shown to be a Campanato-type space.



rate research

Read More

We present in this paper some embeddings of various dyadic martingale Hardy-amalgam spaces $H^S_{p,q},,, H^s_{p,q},,,H^*_{p,q},,,mathcal{Q}_{p,q}$ and $mathcal{P}_{p,q}$ of the real line. In the same settings, we characterize the dual of $H^s_{p,q}$ for large $p$ and $q$. We also introduce a Garsia-type space $mathcal{G}_{p,q}$ and characterize its dual space.
In this paper, we establish the sharp conditions for the inclusion relations between Besov spaces $B_{p,q}$ and Wiener amalgam spaces $W_{p,q}^s$. We also obtain the optimal inclusion relations between local hardy spaces $h^p$ and Wiener amalgam spaces $W_{p,q}^s$, which completely improve and extend the main results obtained by Cunanana, Kobayashib and Sugimotoa in [J. Funct. Anal. 268 (2015), 239-254]. In addition, we establish some mild characterizations of inclusion relations between Triebel-Lizorkin and Wiener amalgam spaces, which relates some modern inequalities to classical inequalities.
This paper obtains new characterizations of weighted Hardy spaces and certain weighted $BMO$ type spaces via the boundedness of variation operators associated with approximate identities and their commutators, respectively.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first introduce the variable weak Hardy space on $mathbb R^n$, $W!H^{p(cdot)}(mathbb R^n)$, via the radial grand maximal function, and then establish its radial or non-tangential maximal function characterizations. Moreover, the authors also obtain various equivalent characterizations of $W!H^{p(cdot)}(mathbb R^n)$, respectively, by means of atoms, molecules, the Lusin area function, the Littlewood-Paley $g$-function or $g_{lambda}^ast$-function. As an application, the authors establish the boundedness of convolutional $delta$-type and non-convolutional $gamma$-order Calderon-Zygmund operators from $H^{p(cdot)}(mathbb R^n)$ to $W!H^{p(cdot)}(mathbb R^n)$ including the critical case $p_-={n}/{(n+delta)}$, where $p_-:=mathopmathrm{ess,inf}_{xin rn}p(x).$
108 - Weichao Guo , Guoping Zhao 2018
We study the boundedness on the Wiener amalgam spaces $W^{p,q}_s$ of Fourier multipliers with symbols of the type $e^{imu(xi)}$, for some real-valued functions $mu(xi)$ whose prototype is $|xi|^{beta}$ with $betain (0,2]$. Under some suitable assumptions on $mu$, we give the characterization of $W^{p,q}_srightarrow W^{p,q}$ boundedness of $e^{imu(D)}$, for arbitrary pairs of $0< p,qleq infty$. Our results are an essential improvement of the previous known results, for both sides of sufficiency and necessity, even for the special case $mu(xi)=|xi|^{beta}$ with $1<beta<2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا