Do you want to publish a course? Click here

Characterization of inclusion relations between wiener amalgam and some classical spaces

319   0   0.0 ( 0 )
 Added by Weichao Guo
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we establish the sharp conditions for the inclusion relations between Besov spaces $B_{p,q}$ and Wiener amalgam spaces $W_{p,q}^s$. We also obtain the optimal inclusion relations between local hardy spaces $h^p$ and Wiener amalgam spaces $W_{p,q}^s$, which completely improve and extend the main results obtained by Cunanana, Kobayashib and Sugimotoa in [J. Funct. Anal. 268 (2015), 239-254]. In addition, we establish some mild characterizations of inclusion relations between Triebel-Lizorkin and Wiener amalgam spaces, which relates some modern inequalities to classical inequalities.



rate research

Read More

108 - Weichao Guo , Guoping Zhao 2018
We study the boundedness on the Wiener amalgam spaces $W^{p,q}_s$ of Fourier multipliers with symbols of the type $e^{imu(xi)}$, for some real-valued functions $mu(xi)$ whose prototype is $|xi|^{beta}$ with $betain (0,2]$. Under some suitable assumptions on $mu$, we give the characterization of $W^{p,q}_srightarrow W^{p,q}$ boundedness of $e^{imu(D)}$, for arbitrary pairs of $0< p,qleq infty$. Our results are an essential improvement of the previous known results, for both sides of sufficiency and necessity, even for the special case $mu(xi)=|xi|^{beta}$ with $1<beta<2$.
In this paper, we introduce the notion of martingale Hardy-amalgam spaces: $ H^s_{p,q},,,mathcal{Q}_{p,q}$ and $mathcal{P}_{p,q}$. We present two atomic decompositions for these spaces. The dual space of $H^s_{p,q}$ for $0<ple qle 1$ is shown to be a Campanato-type space.
We present in this paper some embeddings of various dyadic martingale Hardy-amalgam spaces $H^S_{p,q},,, H^s_{p,q},,,H^*_{p,q},,,mathcal{Q}_{p,q}$ and $mathcal{P}_{p,q}$ of the real line. In the same settings, we characterize the dual of $H^s_{p,q}$ for large $p$ and $q$. We also introduce a Garsia-type space $mathcal{G}_{p,q}$ and characterize its dual space.
Let $Dinmathbb{N}$, $qin[2,infty)$ and $(mathbb{R}^D,|cdot|,dx)$ be the Euclidean space equipped with the $D$-dimensional Lebesgue measure. In this article, via an auxiliary function space $mathrm{WE}^{1,,q}(mathbb R^D)$ defined via wavelet expansions, the authors establish the Riesz transform characterization of Triebel-Lizorkin spaces $dot{F}^0_{1,,q}(mathbb{R}^D)$. As a consequence, the authors obtain the Fefferman-Stein decomposition of Triebel-Lizorkin spaces $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Finally, the authors give an explicit example to show that $dot{F}^0_{1,,q}(mathbb{R}^D)$ is strictly contained in $mathrm{WE}^{1,,q}(mathbb{R}^D)$ and, by duality, $mathrm{WE}^{infty,,q}(mathbb{R}^D)$ is strictly contained in $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Although all results when $D=1$ were obtained by C.-C. Lin et al. [Michigan Math. J. 62 (2013), 691-703], as was pointed out by C.-C. Lin et al., the approach used in the case $D=1$ can not be applied to the case $Dge2$, which needs some new skills.
106 - Shuichi Sato 2016
We consider Littlewood-Paley functions associated with non-isotropic dilations. We prove that they can be used to characterize the parabolic Hardy spaces of Calder{o}n-Torchinsky.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا