Do you want to publish a course? Click here

Variational characterizations of weighted Hardy spaces and weighted $BMO$ spaces

119   0   0.0 ( 0 )
 Added by Yongming Wen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper obtains new characterizations of weighted Hardy spaces and certain weighted $BMO$ type spaces via the boundedness of variation operators associated with approximate identities and their commutators, respectively.



rate research

Read More

329 - Jordi Pau , Ruhan Zhao , 2015
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying that there exists a constant $p_0in(0,p_-)$, where $p_-:=mathop{mathrm {ess,inf}}_{xin mathbb R^n}p(x)$, such that the Hardy-Littlewood maximal operator is bounded on the variable exponent Lebesgue space $L^{p(cdot)/p_0}(mathbb R^n)$. In this article, via investigating relations between boundary valued of harmonic functions on the upper half space and elements of variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$ introduced by E. Nakai and Y. Sawano and, independently, by D. Cruz-Uribe and L.-A. D. Wang, the authors characterize $H^{p(cdot)}(mathbb R^n)$ via the first order Riesz transforms when $p_-in (frac{n-1}n,infty)$, and via compositions of all the first order Riesz transforms when $p_-in(0,frac{n-1}n)$.
86 - Yongjiang Duan , Siyu Wang , 2021
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration operators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.
Let $L$ be a linear operator on $L^2(mathbb R^n)$ generating an analytic semigroup ${e^{-tL}}_{tge0}$ with kernels having pointwise upper bounds and $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors introduce the variable exponent Hardy space associated with the operator $L$, denoted by $H_L^{p(cdot)}(mathbb R^n)$, and the BMO-type space ${mathrm{BMO}}_{p(cdot),L}(mathbb R^n)$. By means of tent spaces with variable exponents, the authors then establish the molecular characterization of $H_L^{p(cdot)}(mathbb R^n)$ and a duality theorem between such a Hardy space and a BMO-type space. As applications, the authors study the boundedness of the fractional integral on these Hardy spaces and the coincidence between $H_L^{p(cdot)}(mathbb R^n)$ and the variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$.
Suppose $ngeq 3$ and let $B$ be the open unit ball in $mathbb{R}^n$. Let $varphi: Bto B$ be a $C^2$ map whose Jacobian does not change sign, and let $psi$ be a $C^2$ function on $B$. We characterize bounded weighted composition operators $W_{varphi,psi}$ acting on harmonic Hardy spaces $h^p(B)$. In addition, we compute the operator norm of $W_{varphi,psi}$ on $h^p(B)$ when $varphi$ is a Mobius transformation of $B$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا