Do you want to publish a course? Click here

Vortex glass-liquid transition and activated flux motion in an epitaxial, super-conducting NdFeAs(O,F) thin film

406   0   0.0 ( 0 )
 Added by Jens H\\\"anisch
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

An epitaxial NdFeAs(O,F) thin film of 90 nm thickness grown by molecular beam epitaxy on MgO single crystal with Tc = 44.2 K has been investigated regarding a possible vortex glass-liquid tran-sition. The voltage-current characteristics show excellent scalability according to the vortex-glass model with a static critical exponent { u} of around 1.35 and a temperature-dependent dynamic exponent z increasing from 7.8 to 9.0 for the investigated temperature range. The large and non-constant z values are discussed in the frame of 3D vortex glass, thermally activated flux motion, and inhomogeneity broadening.



rate research

Read More

248 - C. Tarantini , K. Iida , N. Sumiya 2018
The effect of $alpha$-particle irradiation on a NdFeAs(O,F) thin film has been investigated to determine how the introduction of defects affects basic superconducting properties, including the critical temperature $T_c$ and the upper critical field $H_{c2}$, and properties more of interest for applications, like the critical current density $J_c$ and the related pinning landscape. The irradiation-induced suppression of the film $T_c$ is significantly smaller than on a similarly damaged single crystal. Moreover $H_{c2}$ behaves differently, depending on the field orientation: for H//c the $H_{c2}$ slope monotonically increases with increasing disorder, whereas for H//ab it remains constant at low dose and it increases only when the sample is highly disordered. This suggests that a much higher damage level is necessary to drive the NdFeAs(O,F) thin film into the dirty limit. Despite the increase in the low temperature $H_{c2}$, the effects on the $J_c$(H//c) performances are moderate in the measured temperature and field ranges, with a shifting of the pinning force maximum from 4.5 T to 6 T after an irradiation of $2times10^{15} cm^{-2}$. On the contrary, $J_c$(H//ab) is always suppressed. The analysis demonstrates that irradiation does introduce point defects acting as pinning centres proportionally to the irradiation fluence but also suppresses the effectiveness of c-axis correlated pinning present in the pristine sample. We estimate that significant performance improvements may be possible at high field or at temperatures below 10 K. The suppression of the $J_c$(H//ab) performance is not related to a decrease of the $J_c$ anisotropy as found in other superconductors. Instead it is due to the presence of point defects that decrease the efficiency of the ab-plane intrinsic pinning typical of materials with a layered structure.
The Fe-based superconductors (FBS) present a large variety of compounds whose properties are affected to different extents by their crystal structures. Amongst them, the $it{RE}$FeAs(O,F) ($it{RE}$1111, where $it{RE}$ is a rare earth element) is the family with the highest critical temperature $T_c$ but also with a large anisotropy and Josephson vortices as demonstrated in the flux-flow regime in Sm1111 ($T_c$ $sim$ 55 K). Here we focus our attention on the pinning properties of the lower-$T_c$ Nd1111 in the flux-creep regime. We demonstrate that for H//c critical current density $J_c$ at high temperatures is dominated by point-defect pinning centres, whereas at low temperatures surface pinning by planar defects parallel to the $it{c}$-axis and vortex shearing prevail. When the field approaches the $it{ab}$-planes, two different regimes are observed at low temperatures as a consequence of the transition between 3D-Abrikosov and 2D-Josephson vortices: one is determined by the formation of a vortex staircase structure and one by lock-in of the vortices parallel to the layers. This is the first study on FBS showing this behaviour in a full temperature, field, and angular range and it demonstrates that, despite the lower $T_c$ and anisotropy of Nd1111 with respect to Sm1111, this compound is substantially affected by intrinsic pinning generating a strong $it{ab}$-peak in $J_c$.
227 - T. Kawaguchi , H. Uemura , T. Ohno 2010
The recently discovered high temperature superconductor F-doped LaFeAsO and related compounds represent a new class of superconductors with the highest transition temperature (Tc) apart from the cuprates. The studies ongoing worldwide are revealing that these Fe-based superconductors are forming a unique class of materials that are interesting from the viewpoint of applications. To exploit the high potential of the Fe-based superconductors for device applications, it is indispensable to establish a process that enables the growth of high quality thin films. Efforts of thin film preparation started soon after the discovery of Fe-based superconductors, but none of the earlier attempts had succeeded in an in-situ growth of a superconducting film of LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the Fe-based superconductors. Here, we report on the successful growth of NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined superconducting transitions up to 48 K without the need of an ex-situ heat treatment.
159 - Y. Qiu , Wei Bao , Q. Huang 2008
The transition temperature Tc~26 K of the recently discovered superconductor LaFeAs(O,F) has been demonstrated to be extremely sensitive to the lanthanide ion, reaching 55 K for the Sm containing oxypnictides. Therefore, it is important to determine how the moment on the lanthanide affects the overall magnetism in these systems. Here we report a neutron diffraction study of the Nd oxypnictides. Long ranged antiferromagnetic order is apparent in NdFeAsO below 1.96 K. Rietveld refinement shows that both Fe and Nd magnetic ordering are required to describe the observed data with the staggered moment 1.55(4) Bohr magneton per Nd and 0.9(1) Bohr magneton per Fe at 0.3 K. The other structural properties such as the tetragonal-orthorhombic distortion are found to be very similar to those in LaFeAsO. Neither the magnetic ordering nor the structural distortion occur in the superconducting sample NdFeAsO0.80F0.20 at any temperatures down to 1.5 K.
The recently-discovered MgB2 super-conductor has a transition temperature Tc approaching 40K, placing it intermediate between the families of low and high temperature super-conductors (LTS and HTS). In practical applications, super-conductors are permeated by quantised magnetic flux vortices, and when a current flows there is dissipation unless the vortices are pinned in some way, and so inhibited from moving under the influence of the Lorentz force. This vortex motion sets the limiting critical current density Jc in the super-conductor. Vortex behaviour has proved to be more complicated in the HTS than in LTS materials. While this has stimulated extensive theoretical and experimental research, it has impeded applications. Clearly it is important to explore vortex behaviour in MgB2; here we report on Jc, and also on the creep rate S, which is a measure of how fast the persistent currents decay. Our results show that naturally-occurring grain boundaries are highly transparent to supercurrent, and suggest that the steep decline in Jc with increasing magnetic field H reflects a weakening of the vortex pinning energy, possibly because this compound forms naturally with a high degree of crystalline perfection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا