No Arabic abstract
The recently-discovered MgB2 super-conductor has a transition temperature Tc approaching 40K, placing it intermediate between the families of low and high temperature super-conductors (LTS and HTS). In practical applications, super-conductors are permeated by quantised magnetic flux vortices, and when a current flows there is dissipation unless the vortices are pinned in some way, and so inhibited from moving under the influence of the Lorentz force. This vortex motion sets the limiting critical current density Jc in the super-conductor. Vortex behaviour has proved to be more complicated in the HTS than in LTS materials. While this has stimulated extensive theoretical and experimental research, it has impeded applications. Clearly it is important to explore vortex behaviour in MgB2; here we report on Jc, and also on the creep rate S, which is a measure of how fast the persistent currents decay. Our results show that naturally-occurring grain boundaries are highly transparent to supercurrent, and suggest that the steep decline in Jc with increasing magnetic field H reflects a weakening of the vortex pinning energy, possibly because this compound forms naturally with a high degree of crystalline perfection.
Despite the intense activity in the year since the discovery of superconductivity in MgB2, key parameters, in particular the upper and lower critical fields Hc2 and Hc1 and their anisotropies, are not well-established, largely because of the difficulty of growing MgB2 crystals. Attempts have been made to deduce these parameters from experiments on polycrystalline material, but they have substantial uncertainties. Hc2 is particularly important for applications, as it is the field which quenches bulk super-conductivity. In terms of understanding MgB2, it is now clear that the conventional electron-phonon interaction is strong enough to account for the high transition temperature Tc, but the consequences of the double super-conducting gap for the anisotropy and its dependence on temperature, are uncertain. Here we describe detailed direct measurements of Hc1(T) and Hc2(T) for the two principal crystallographic directions in a clean single crystal of MgB2. For fields in the c-direction, $mu_0 H^c_{c1}(0)$ = $0.28 +- 0.01T$ and $mu_0 H^c_{c2}(0)$ is $3 +- 0.5T$; this ratio of critical fields is rather low and implies that MgB2 is only just a Type II super-conductor. The anisotropies of both critical fields are close to 2.
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc.
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB$_{2}$ tapes have been measured at temperatures $Tgeq 28$ K in magnetic fields $Bleq 0.9$ T. The irreversibility line $B_{irr}(T)$ for doped tape shows a stepwise variation with a kink around 0.3 T. Such $B_{irr}(T)$ variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field $% B_{phi}$) and is very different from a smooth $B_{irr}(T)$ variation in undoped MgB$_{2}$ samples. The microstructure studies of nanoparticle doped MgB$_{2}$ samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.
The high resistivity of many bulk and film samples of MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence the supercurrent (Jc) in such samples will be limited by the same area factor, arising for example from porosity or from insulating oxides present at the grain boundaries. We suggest that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K) - Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We report measurements of Rho(T) and Jc for a number of films made by hybrid physical-chemical vapor deposition which demonstrate this correlation, although the reduced effective area argument alone is not sufficient. We suggest that this argument can also apply to many polycrystalline bulk and wire samples of MgB2.
MgB2/Fe tapes with 2.5-15 at.% ZrB2 additions were prepared through the in situ powder-in-tube method. Compared to the pure tape, a significant improvement in the in-field critical current density Jc was observed, most notably for 10 at.% doping, while the critical temperature decreased slightly. At 4.2 K, the transport Jc for the 10 at.% doped sample increased by more than an order of magnitude than the undoped one in magnetic fields above 9 T. Nanoscale segregates or defects caused by the ZrB2 additions which act as effective flux pinning centers are proposed to be the main reason for the improved Jc field performance.