No Arabic abstract
Whole brain segmentation on structural magnetic resonance imaging (MRI) is essential for understanding neuroanatomical-functional relationships. Traditionally, multi-atlas segmentation has been regarded as the standard method for whole brain segmentation. In past few years, deep convolutional neural network (DCNN) segmentation methods have demonstrated their advantages in both accuracy and computational efficiency. Recently, we proposed the spatially localized atlas network tiles (SLANT) method, which is able to segment a 3D MRI brain scan into 132 anatomical regions. Commonly, DCNN segmentation methods yield inferior performance under external validations, especially when the testing patterns were not presented in the training cohorts. Recently, we obtained a clinically acquired, multi-sequence MRI brain cohort with 1480 clinically acquired, de-identified brain MRI scans on 395 patients using seven different MRI protocols. Moreover, each subject has at least two scans from different MRI protocols. Herein, we assess the SLANT methods intra- and inter-protocol reproducibility. SLANT achieved less than 0.05 coefficient of variation (CV) for intra-protocol experiments and less than 0.15 CV for inter-protocol experiments. The results show that the SLANT method achieved high intra- and inter- protocol reproducibility.
Whole brain extraction, also known as skull stripping, is a process in neuroimaging in which non-brain tissue such as skull, eyeballs, skin, etc. are removed from neuroimages. Skull striping is a preliminary step in presurgical planning, cortical reconstruction, and automatic tumor segmentation. Despite a plethora of skull stripping approaches in the literature, few are sufficiently accurate for processing pathology-presenting MRIs, especially MRIs with brain tumors. In this work we propose a deep learning approach for skull striping common MRI sequences in oncology such as T1-weighted with gadolinium contrast (T1Gd) and T2-weighted fluid attenuated inversion recovery (FLAIR) in patients with brain tumors. We automatically created gray matter, white matter, and CSF probability masks using SPM12 software and merged the masks into one for a final whole-brain mask for model training. Dice agreement, sensitivity, and specificity of the model (referred herein as DeepBrain) was tested against manual brain masks. To assess data efficiency, we retrained our models using progressively fewer training data examples and calculated average dice scores on the test set for the models trained in each round. Further, we tested our model against MRI of healthy brains from the LBP40A dataset. Overall, DeepBrain yielded an average dice score of 94.5%, sensitivity of 96.4%, and specificity of 98.5% on brain tumor data. For healthy brains, model performance improved to a dice score of 96.2%, sensitivity of 96.6% and specificity of 99.2%. The data efficiency experiment showed that, for this specific task, comparable levels of accuracy could have been achieved with as few as 50 training samples. In conclusion, this study demonstrated that a deep learning model trained on minimally processed automatically-generated labels can generate more accurate brain masks on MRI of brain tumor patients within seconds.
Detailed whole brain segmentation is an essential quantitative technique, which provides a non-invasive way of measuring brain regions from a structural magnetic resonance imaging (MRI). Recently, deep convolution neural network (CNN) has been applied to whole brain segmentation. However, restricted by current GPU memory, 2D based methods, downsampling based 3D CNN methods, and patch-based high-resolution 3D CNN methods have been the de facto standard solutions. 3D patch-based high resolution methods typically yield superior performance among CNN approaches on detailed whole brain segmentation (>100 labels), however, whose performance are still commonly inferior compared with multi-atlas segmentation methods (MAS) due to the following challenges: (1) a single network is typically used to learn both spatial and contextual information for the patches, (2) limited manually traced whole brain volumes are available (typically less than 50) for training a network. In this work, we propose the spatially localized atlas network tiles (SLANT) method to distribute multiple independent 3D fully convolutional networks (FCN) for high-resolution whole brain segmentation. To address the first challenge, multiple spatially distributed networks were used in the SLANT method, in which each network learned contextual information for a fixed spatial location. To address the second challenge, auxiliary labels on 5111 initially unlabeled scans were created by multi-atlas segmentation for training. Since the method integrated multiple traditional medical image processing methods with deep learning, we developed a containerized pipeline to deploy the end-to-end solution. From the results, the proposed method achieved superior performance compared with multi-atlas segmentation methods, while reducing the computational time from >30 hours to 15 minutes (https://github.com/MASILab/SLANTbrainSeg).
Model architectures have been dramatically increasing in size, improving performance at the cost of resource requirements. In this paper we propose 3DQ, a ternary quantization method, applied for the first time to 3D Fully Convolutional Neural Networks (F-CNNs), enabling 16x model compression while maintaining performance on par with full precision models. We extensively evaluate 3DQ on two datasets for the challenging task of whole brain segmentation. Additionally, we showcase our methods ability to generalize on two common 3D architectures, namely 3D U-Net and V-Net. Outperforming a variety of baselines, the proposed method is capable of compressing large 3D models to a few MBytes, alleviating the storage needs in space critical applications.
Whole brain segmentation on a structural magnetic resonance imaging (MRI) is essential in non-invasive investigation for neuroanatomy. Historically, multi-atlas segmentation (MAS) has been regarded as the de facto standard method for whole brain segmentation. Recently, deep neural network approaches have been applied to whole brain segmentation by learning random patches or 2D slices. Yet, few previous efforts have been made on detailed whole brain segmentation using 3D networks due to the following challenges: (1) fitting entire whole brain volume into 3D networks is restricted by the current GPU memory, and (2) the large number of targeting labels (e.g., > 100 labels) with limited number of training 3D volumes (e.g., < 50 scans). In this paper, we propose the spatially localized atlas network tiles (SLANT) method to distribute multiple independent 3D fully convolutional networks to cover overlapped sub-spaces in a standard atlas space. This strategy simplifies the whole brain learning task to localized sub-tasks, which was enabled by combing canonical registration and label fusion techniques with deep learning. To address the second challenge, auxiliary labels on 5111 initially unlabeled scans were created by MAS for pre-training. From empirical validation, the state-of-the-art MAS method achieved mean Dice value of 0.76, 0.71, and 0.68, while the proposed method achieved 0.78, 0.73, and 0.71 on three validation cohorts. Moreover, the computational time reduced from > 30 hours using MAS to ~15 minutes using the proposed method. The source code is available online https://github.com/MASILab/SLANTbrainSeg
Cardiac magnetic resonance (CMR) is used extensively in the diagnosis and management of cardiovascular disease. Deep learning methods have proven to deliver segmentation results comparable to human experts in CMR imaging, but there have been no convincing results for the problem of end-to-end segmentation and diagnosis from CMR. This is in part due to a lack of sufficiently large datasets required to train robust diagnosis models. In this paper, we propose a learning method to train diagnosis models, where our approach is designed to work with relatively small datasets. In particular, the optimisation loss is based on multi-task learning that jointly trains for the tasks of segmentation and diagnosis classification. We hypothesize that segmentation has a regularizing effect on the learning of features relevant for diagnosis. Using the 100 training and 50 testing samples available from the Automated Cardiac Diagnosis Challenge (ACDC) dataset, which has a balanced distribution of 5 cardiac diagnoses, we observe a reduction of the classification error from 32% to 22%, and a faster convergence compared to a baseline without segmentation. To the best of our knowledge, this is the best diagnosis results from CMR using an end-to-end diagnosis and segmentation learning method.