Do you want to publish a course? Click here

Calibration and Status of the 3D Imaging Calorimeter of DAMPE for Cosmic Ray Physics on Orbit

389   0   0.0 ( 0 )
 Added by Libo Wu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The DArk Matter Particle Explorer (DAMPE) developed in China was designed to search for evidence of dark matter particles by observing primary cosmic rays and gamma rays in the energy range from 5 GeV to 10 TeV. Since its launch in December 2015, a large quantity of data has been recorded. With the data set acquired during more than a year of operation in space, a precise time-dependent calibration for the energy measured by the BGO ECAL has been developed. In this report, the instrumentation and development of the BGO Electromagnetic Calorimeter (BGO ECAL) are briefly described. The calibration on orbit, including that of the pedestal, attenuation length, minimum ionizing particle peak, and dynode ratio, is discussed, and additional details about the calibration methods and performance in space are presented.



rate research

Read More

The DAMPE (DArk Matter Particle Explorer) is a scientific satellite being developed in China, aimed at cosmic ray study, gamma ray astronomy, and searching for the clue of dark matter particles, with a planned mission period of more than 3 years and an orbit altitude of about 500 km. The BGO Calorimeter, which consists of 308 BGO (Bismuth Germanate Oxid) crystal bars, 616 PMTs (photomultiplier tubes) and 1848 dynode signals, has approximately 32 radiation lengths. It is a crucial sub-detector of the DAMPE payload, with the functions of precisely measuring the energy of cosmic particles from 5 GeV to 10TeV, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information for the whole DAMPE payload. The dynamic range for a single BGO crystal is about 2?105 and there are 1848 detector signals in total. To build such an instrument in space, the major design challenges for the readout electronics come from the large dynamic range, the high integrity inside the very compact structure, the strict power supply budget and the long term reliability to survive the hush environment during launch and in orbit. Currently the DAMPE mission is in the end of QM (Qualification Model) stage. This paper presents a detailed description of the readout electronics for the BGO calorimeter.
159 - H.T. Dai , Y.L. Zhang , J.J. Zang 2020
This paper is about a study on the response of the BGO calorimeter of DAMPE experiment. Four elements in Cosmic Ray nuclei are used as sources for this analysis. A feature resulting from the geomagnetic cutoff exhibits in the energy spectrum, both in simulated and reconstructed data, and is compared between them.
An imaging calorimeter has been designed and is being built for the PAMELA satellite-borne experiment. The physics goals of the experiment are the measurement of the flux of antiprotons, positrons and light isotopes in the cosmic radiation. The calorimeter is designed to perform a precise measurement of the total energy deposited, to reconstruct the spatial development of the showers (both in the longitudinal and in the transverse directions), and to measure the energy distribution along the shower itself. From this information, the calorimeter will identify antiprotons from a electron background and positrons in a background of protons with an efficiency of about 95% and a rejection power better than 10^-4. Furthermore, a self-trigger system has been implemented with the calorimeter that will be employed to measure high-energy (from about 300 GeV to more than 1 TeV) electrons. The instrument is composed of 22 layers of tungsten, each sandwiched between two views of silicon strip detectors (X and Y). The signals are read out by a custom VLSI front-end chip, the CR1.4P, specifically designed for the PAMELA calorimeter, with a dynamic range of 7.14 pC or 1400 mip (minimum ionizing particle). We report on the simulated performance and prototype design.
X-ray calorimeters routinely achieve very high spectral resolution, typically a few eV full width at half maximum (FWHM). Measurements of calorimeter line shapes are usually dominated by the natural linewidth of most laboratory calibration sources. This compounds the data acquisition time necessary to statistically sample the instrumental line broadening, and can add systematic uncertainty if the intrinsic line shape of the source is not well known. To address these issues, we have built a simple, compact monochromatic x-ray source using channel cut crystals. A commercial x-ray tube illuminates a pair of channel cut crystals which are aligned in a dispersive configuration to select the kaone line of the x-ray tube anode material. The entire device, including x-ray tube, can be easily hand carried by one person and may be positioned manually or using a mechanical translation stage. The output monochromatic beam provides a collimated image of the anode spot with magnification of unity in the dispersion direction (typically 100-200 $mu$m for the x-ray tubes used here), and is unfocused in the cross-dispersion direction, so that the source image in the detector plane appears as a line. We measured output count rates as high as 10 count/s/pixel for the Hitomi Soft X-ray Spectrometer, which had 819 $mu$m square pixels. We implemented different monochromator designs for energies of 5.4 keV (one design) and 8.0 keV (two designs) which have effective theoretical FWHM energy resolution of 0.125, 0.197, and 0.086 eV, respectively; these are well-suited for optimal calibration measurements of state-of-the art x-ray calorimeters. We measured an upper limit for the energy resolution of our crkaone monochromator of 0.7 eV FWHM at 5.4 keV, consistent with the theoretical prediction of 0.125 eV.
DArk Matter Particle Explorer (DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 GeV to 10 TeV and hundreds of TeV for nuclei. This paper provides a method using machine learning to identify electrons and separate them from gammas,protons,helium and heavy nuclei with the DAMPE data from 2016 January 1 to 2017 June 30, in energy range from 10 to 100 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا