Do you want to publish a course? Click here

Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI$_3$

65   0   0.0 ( 0 )
 Added by Suchanda Mondal
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the magnetic properties of highly anisotropic layered ferromagnetic semiconductor CrI$_3$ in presence of hydrostatic pressure ($P$). At ambient pressure, magnetization exhibits a clear anomaly below 212 K along with a thermal hysteresis over a wide temperature range (212-180 K), where a first-order structural transition is observed. CrI$_3$ undergoes a second-order ferromagnetic-paramagnetic phase transition with Curie temperature $T_C$=60.4 K. With application of pressure, the transition becomes sharper and $T_C$ is found to increase from 60.4 to 64.9 K as $P$ increases from 0 to 1.0 GPa. $T_C$ increases with $P$ in a sublinear fashion. The thermal hysteresis in magnetization and the increase of $T_C$ with pressure suggest that the spin and lattice degrees of freedom are coupled. The observed increase in $T_C$ has been explained on the basis of change in inter-layer coupling and Cr-I-Cr bond angle with pressure.



rate research

Read More

Microscopic origin of the ferromagnetic (FM) exchange coupling in CrCl$_3$ and CrI$_3$, their common aspects and differences, are investigated on the basis of density functional theory combined with realistic modeling approach for the analysis of interatomic exchange interactions. We perform a comparative study based on the pseudopotential and linear muffin-tin orbital methods by treating the effects of electron exchange and correlation in GGA and LSDA, respectively. The results of ordinary band structure calculations are used in order to construct the minimal tight-binding type models describing the behavior of the magnetic Cr $3d$ and ligand $p$ bands in the basis of localized Wannier functions, and evaluate the effective exchange coupling ($J_{rm eff}$) between two Cr sublattices employing four different technique: (i) Second-order Greens function perturbation theory for infinitesimal spin rotations of the LSDA (GGA) potential at the Cr sites; (ii) Enforcement of the magnetic force theorem in order to treat both Cr and ligand spins on a localized footing; (iii) Constrained total-energy calculations with an external field, treated in the framework of self-consistent linear response theory. We argue that the ligand states play crucial role in the ferromagnetism of Cr trihalides, though their contribution to $J_{rm eff}$ strongly depends on additional assumptions, which are traced back to fundamentals of adiabatic spin dynamics. Particularly, by neglecting ligand spins in the Greens function method, $J_{rm eff}$ can easily become antiferromagnetic, while by treating them as localized, one can severely overestimate the FM coupling. The best considered approach is based on the constraint method, where the ligand states are allowed to relax in response to each instantaneous reorientation of the Cr spins, controlled by the external field.
188 - Michele Pizzochero 2020
The family of atomically thin magnets holds great promise for a number of prospective applications in magneto-optoelectronics, with CrI$_3$ arguably being its most prototypical member. However, the formation of defects in this system remains unexplored to date. Here, we investigate native point defects in monolayer CrI$_3$ by means of first-principles calculations. We consider a large set of intrinsic impurities and address their atomic structure, thermodynamic stability, diffusion and aggregation tendencies as well as local magnetic moments. Under thermodynamic equilibrium, the most stable defects are found to be either Cr or I atomic vacancies along with their complexes, depending on the chemical potential conditions. These defects are predicted to be quite mobile at room temperature and to exhibit a strong tendency to agglomerate. In addition, our calculations indicate that the defect-induced deviation from the nominal stoichiometry largely impacts the local magnetic moments, thereby suggesting a marked interplay between magnetism and disorder in CrI$_3$. Overall, this work portrays a comprehensive picture of intrinsic point defects in monolayer CrI$_3$ from a theoretical perspective.
Few-layer CrI$_3$ is the most known example among two-dimensional (2D) ferromagnets, which have attracted growing interest in recent years. Despite considerable efforts and progress in understanding the properties of 2D magnets both from theory and experiment, the mechanism behind the formation of in-plane magnetic ordering in chromium halides is still under debate. Here, we propose a microscopic orbitally-resolved description of ferromagnetism in monolayer CrI$_3$. Starting from first-principles calculations, we construct a low-energy model for the isotropic Heisenberg exchange interactions. We find that there are two competing contributions to the long-range magnetic ordering in CrI$_3$: (i) Antiferromagnetic Andersons superexchange between half-filled $t_{2g}$ orbitals of Cr atoms; and (ii) Ferromagnetic exchange governed by the Kugel-Khomskii mechanism, involving the transitions between half-filled $t_{2g}$ and empty $e_g$ orbitals. Using numerical calculations, we estimate the exchange interactions in momentum-space, which allows us to restore the spin-wave spectrum, as well as estimate the Curie temperature. Contrary to the nearest-neighbor effective models, our calculations suggest the presence of sharp resonances in the spin-wave spectrum at 5--7 meV, depending on the vertical bias voltage. Our estimation of the Curie temperature in monolayer CrI$_3$ yields 55--65 K, which is in good agreement with experimental data.
Material research has been a major driving force in the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices; identifying new magnetic materials is key to better device performance and new device paradigm. The advent of two-dimensional van der Waals crystals creates new possibilities. This family of materials retain their chemical stability and structural integrity down to monolayers and, being atomically thin, are readily tuned by various kinds of gate modulation. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr$_2$Ge$_2$Te$_6$ and CrI$_3$ at low temperatures. Here, we developed a new device fabrication technique, and successfully isolated monolayers from layered metallic magnet Fe$_3$GeTe$_2$ for magnetotransport study. We found that the itinerant ferromagnetism persists in Fe$_3$GeTe$_2$ down to monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, $T_c$, is suppressed in pristine Fe$_3$GeTe$_2$ thin flakes. An ionic gate, however, dramatically raises the $T_c$ up to room temperature, significantly higher than the bulk $T_c$ of 205 Kelvin. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe$_3$GeTe$_2$ opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
Bi$_2$Se$_3$, a layered three dimensional (3D) material, exhibits topological insulating properties due to presence of surface states and a band gap of 0.3 eV in the bulk. We study the effect hydrostatic pressure $P$ and doping with rare earth elements on the topological aspect of this material in bulk from a first principles perspective. Our study shows that under a moderate pressure of P$>$7.9 GPa, the bulk electronic properties show a transition from an insulating to a Weyl semi-metal state due to band inversion. This electronic topological transition may be correlated to a structural change from a layered van der Waals material to a 3D system observed at $P$=7.9 GPa. At large $P$ density of states have significant value at the Fermi-energy. Intercalating Gd with a small doping fraction between Bi$_2$Se$_3$ layers drives the system to a metallic anti-ferromagnetic state, with Weyl nodes below the Fermi-energy. At the Weyl nodes time reversal symmetry is broken due to finite local field induced by large magnetic moments on Gd atoms. However, substituting Bi with Gd induces anti-ferromagnetic order with an increased direct band gap. Our study provides novel approaches to tune topological transitions, particularly in capturing the elusive Weyl semimetal states, in 3D topological materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا