Do you want to publish a course? Click here

Topological transitions to Weyl states in bulk Bi$_2$Se$_3$: Effect of hydrostatic pressure and doping

85   0   0.0 ( 0 )
 Added by Hrishit Banerjee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bi$_2$Se$_3$, a layered three dimensional (3D) material, exhibits topological insulating properties due to presence of surface states and a band gap of 0.3 eV in the bulk. We study the effect hydrostatic pressure $P$ and doping with rare earth elements on the topological aspect of this material in bulk from a first principles perspective. Our study shows that under a moderate pressure of P$>$7.9 GPa, the bulk electronic properties show a transition from an insulating to a Weyl semi-metal state due to band inversion. This electronic topological transition may be correlated to a structural change from a layered van der Waals material to a 3D system observed at $P$=7.9 GPa. At large $P$ density of states have significant value at the Fermi-energy. Intercalating Gd with a small doping fraction between Bi$_2$Se$_3$ layers drives the system to a metallic anti-ferromagnetic state, with Weyl nodes below the Fermi-energy. At the Weyl nodes time reversal symmetry is broken due to finite local field induced by large magnetic moments on Gd atoms. However, substituting Bi with Gd induces anti-ferromagnetic order with an increased direct band gap. Our study provides novel approaches to tune topological transitions, particularly in capturing the elusive Weyl semimetal states, in 3D topological materials.



rate research

Read More

Using scanning tunneling spectroscopy we have studied the effects of nitrogen gas exposure on the bismuth selenide density of states. We observe a shift in the Dirac point which is qualitatively consistent with theoretical modeling of nitrogen binding to selenium vacancies. In carefully controlled measurements, Bi$_2$Se$_3$ crystals were initially cleaved in a helium gas environment and then exposed to a 22 SCFH flow of ultra-high purity N$_2$ gas. We observe a resulting change in the spectral curves, with the exposure effect saturating after approximately 50 minutes, ultimately bringing the Dirac point about 50 meV closer to the Fermi level. These results are compared to density functional theoretical calculations, which support a picture of $N_2$ molecules physisorbing near Se vacancies and dissociating into individual N atoms which then bind strongly to Se vacancies. In this interpretation, the binding of the N atom to a Se vacancy site removes the surface defect state created by the vacancy and changes the position of the Fermi energy with respect to the Dirac point.
Rubidium adsorption on the surface of the topological insulator Bi$_2$Se$_3$ is found to induce a strong downward band bending, leading to the appearance of a quantum-confined two dimensional electron gas states (2DEGs) in the conduction band. The 2DEGs shows a strong Rashba-type spin-orbit splitting, and it has previously been pointed out that this has relevance to nano-scale spintronics devices. The adsorption of Rb atoms, on the other hand, renders the surface very reactive and exposure to oxygen leads to a rapid degrading of the 2DEGs. We show that intercalating the Rb atoms, presumably into the van der Waals gaps in the quintuple layer structure of Bi$_2$Se$_3$, drastically reduces the surface reactivity while not affecting the promising electronic structure. The intercalation process is observed above room temperature and accelerated with increasing initial Rb coverage, an effect that is ascribed to the Coulomb interaction between the charged Rb ions. Coulomb repulsion is also thought to be responsible for a uniform distribution of Rb on the surface.
We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ layers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $Gamma$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.
We report molecular beam epitaxy growth of Sr-doped Bi$_2$Se$_3$ films on (111) BaF$_2$ substrate, aimed to realize unusual superconducting properties inherent to Sr$_x$Bi$_2$Se$_3$ single crystals. Despite wide range of the compositions, we do not achieve superconductivity. To explore the reason for that we study structural, morphological and electronic properties of the films and compare them to the corresponding properties of the single crystals. The dependence of the c-lattice constant in the films on Sr content appears to be more than an order of magnitude stronger than in the crystals. Correspondingly, all other properties also differ substantially, indicating that Sr atoms get different positions in lattices. We argue that these structural discrepancies come from essential differences in growth conditions. Our research calls for more detailed structural studies and novel growth approaches for design of superconducting Sr$_x$Bi$_2$Se$_3$ thin films.
We have utilized time-domain magneto-terahertz spectroscopy to investigate the low frequency optical response of topological insulator Cu$_{0.02}$Bi$_2$Se$_3$ and Bi$_2$Se$_3$ films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu$_{0.02}$Bi$_2$Se$_3$ induces a true bulk insulator with only a textit{single} type of conduction with total sheet carrier density $sim4.9times10^{12}/$cm$^{2}$ and mobility as high as 4000 cm$^{2}/$V$cdot$s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on top and bottom of the film with a chemical potential $sim$145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero field Drude conductance. In contrast, in normal Bi$_2$Se$_3$ films two conduction channels were observed and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk/2DEG states. Our high-resolution Faraday rotation spectroscopy on Cu$_{0.02}$Bi$_2$Se$_3$ paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push chemical potential in the lowest Landau Level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا