Do you want to publish a course? Click here

Carnot efficiency and zero-entropy-production rate do not guarantee reversibility of a process

250   0   0.0 ( 0 )
 Added by Jaegon Um
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermodynamic process at zero-entropy-production (EP) rate has been regarded as a reversible process. A process achieving the Carnot efficiency is also considered as a reversible process. Therefore, the condition, `Carnot efficiency at zero-EP rate could be regarded as a strong equivalent condition for a reversible process. Here, however, we show that the detailed balance can be broken for a zero-EP rate process and even for a process achieving the Carnot efficiency at zero-EP rate in an example of a quantum-dot model. This clearly demonstrates that `Carnot efficiency at zero-EP rate or just zero-EP rate is not a sufficient condition for a reversible process.



rate research

Read More

We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, non-equilibrium Carnot cycle and determine its efficiency at maximum power.
72 - Yunxin Zhang 2021
With nontrivial entropy production, first passage process is one of the most common nonequilibrium process in stochastic thermodynamics. Using one dimensional birth and death precess as a model framework, approximated expressions of mean first passage time (FPT), mean total number of jumps (TNJ), and their coefficients of variation (CV), are obtained for the case far from equilibrium. Consequently, uncertainty relations for FPT and TNJ are presented. Generally, mean FPT decreases exponentially with entropy production, while mean TNJ decreases exponentially first and then tends to a starting site dependent limit. For forward biased process, the CV of TNJ decreases exponentially with entropy production, while that of FPT decreases exponentially first and then tends to a starting site dependent limit. For backward biased process, both CVs of FPT and TNJ tend to one for large absolute values of entropy production. Related properties about the case of equilibrium are also addressed briefly for comparison.
The nonequilibrium stationary state of an irreversible spherical model is investigated on hypercubic lattices. The model is defined by Langevin equations similar to the reversible case, but with asymmetric transition rates. In spite of being irreversible, we have succeeded in finding an explicit form for the stationary probability distribution, which turns out to be of the Boltzmann-Gibbs type. This enables one to evaluate the exact form of the entropy production rate at the stationary state, which is non-zero if the dynamical rules of the transition rates are asymmetric.
We study the efficiency at maximum power, $eta^*$, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures $T_h$ and $T_c$, respectively. For engines reaching Carnot efficiency $eta_C=1-T_c/T_h$ in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that $eta^*$ is bounded from above by $eta_C/(2-eta_C)$ and from below by $eta_C/2$. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend respectively to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency $eta_{CA}=1-sqrt{T_c/T_h}$ is recovered.
234 - Haitao Yu , Jiulin Du 2014
The entropy production rate of nonequilibrium systems is studied via the Fokker-Planck equation. This approach, based on the entropy production rate equation given by Schnakenberg from a master equation, requires information of the transition rate of the system under study. We obtain the transition rate from the conditional probability extracted from the Fokker-Planck equation and then derive a new and more operable expression for the entropy production rate. Examples are presented as applications of our approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا