No Arabic abstract
We study the efficiency at maximum power, $eta^*$, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures $T_h$ and $T_c$, respectively. For engines reaching Carnot efficiency $eta_C=1-T_c/T_h$ in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that $eta^*$ is bounded from above by $eta_C/(2-eta_C)$ and from below by $eta_C/2$. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend respectively to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency $eta_{CA}=1-sqrt{T_c/T_h}$ is recovered.
We study the maximum efficiency of a Carnot cycle heat engine based on a small system. It is revealed that due to the finiteness of the system, irreversibility may arise when the working substance contacts with a heat bath. As a result, there is a working-substance-dependent correction to the usual Carnot efficiency, which is valid only when the working substance is in the thermodynamic limit. We derives a general and simple expression for the maximum efficiency of a Carnot cycle heat engine in terms of the relative entropy. This maximum efficiency approaches the usual Carnot efficiency asymptotically when the size of the working substance increases to the thermodynamic limit. Our study extends the Carnots result to cases with arbitrary size working substance and demonstrates the subtlety of thermodynamics in small systems.
We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional engine working in and with a time-dependent harmonic potential.
Molecular motors transduce chemical energy obtained from hydrolizing ATP into mechanical work exerted against an external force. We calculate their efficiency at maximum power output for two simple generic models and show that the qualitative behaviour depends crucially on the position of the transition state. Specifically, we find a transition state near the initial state (sometimes characterized as a power stroke) to be most favorable with respect to both high power output and high efficiency at maximum power. In this regime, driving the motor further out of equilibrium by applying higher chemical potential differences can even, counter-intuitively, increase the efficiency.
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation of nonlinear response accurate up to the quadratic order is derived from the symmetry argument and the stall condition. By applying this generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient condition for the universality of efficiency at maximum power, which states that a tight-coupling heat engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through the engine matches the characteristic energy of the engine. As a result, we solve the following paradox: On the one hand, the universal quadratic term in the efficiency at maximum power for tight-coupling heat engines proved as a consequence of symmetry [M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009); S. Q. Sheng and Z. C. Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, two typical heat engines including the Curzon-Ahlborn endoreversible heat engine [F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman ratchet [Z. C. Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any symmetry.
We investigate the efficiency of systems of molecular motors operating at maximum power. We consider two models of kinesin motors on a microtubule: for both the simplified and the detailed model, we find that the many-body exclusion effect enhances the efficiency at maximum power of the many-motor system, with respect to the single motor case. Remarkably, we find that this effect occurs in a limited region of the system parameters, compatible with the biologically relevant range.