No Arabic abstract
Charged hadron production in the $e^{+}e^{-}$ annihilations at 91 to 206 GeV in full phase space and in $overline{p}p$ collisions at 200 to 900~GeV collision energies are studied using non-extensive Tsallis and stochastic Weibull probability distributions.~The Tsallis distribution shows better description of the data than the Weibull distribution. The 2-jet modification of the statistical distribution is applied to describe $e^{+}e^{-}$ data.~The main features of these distributions can be described by a two-component model with soft, collective interactions at low transverse energy and hard, constituent interactions dominating at high transverse energy.~This modification is found to give much better description than a full-sample fit, and again Tsallis function is found to better describe the data than the Weibull one pointing at the non-extensive character of the multiparticle production process.
Multiplicity distributions of charged particles produced in the e^{+}e^{-} collisions at energies ranging from 14 to 91 GeV are studied using Tsallis q-statistics and the recently proposed Weibull distribution functions, in both restricted rapidity windows as well as in full phase space. It is shown that Tsallis $q$-statistics explains the data excellently in all rapidity ranges while the Weibull distribution fails to reproduce the data in full phase space. Modifications to the distributions are proposed to establish manifold improvements in the fitting of the data.
Multiplicity distributions of charged particles produced in the $e^{+}e^{-}$ collisions at LEP2 energies ranging from 91 to 206 GeV in full phase space, are compared with predictions from Tsallis $q$-statistics and the recently proposed Weibull distribution functions.~The analysis uses data from two LEP experiments, L3 and OPAL.~It is shown that Tsallis $q$-statistics explains the data in a statistically acceptable manner in full phase space at all energies, while the Weibull distribution fails to explain the underlying properties of the data.~Modifications to the distributions proposed earlier, are applied to uncover manifold improvements in explaining the data characteristics.
In recent years the Tsallis statistics is gaining popularity in describing charged particle produc- tion and their properties, in particular pT spectra and the multiplicities in high energy particle collisions. Motivated by its success, an analysis of the LHC data of proton-proton collisions at ener- gies ranging from 0.9 TeV to 7 TeV in different rapidity windows for charged particle multiplicities has been done. A comparative analysis is performed in terms of the Tsallis distribution, the Gamma distribution and the shifted-Gamma distribution. An interesting observation on the inapplicability of these distributions at sqrt{s}=7 TeV in the lower rapidity windows is intriguing. The non-extensive nature of the Tsallis statistics is studied by determining the entropic index and its energy depen- dence. The analysis is extrapolated to predict the multiplicity distribution at sqrt{s}=14 TeV for one rapidity window, |y| < 1.5 with the Tsallis function.
In continuation of our earlier work, in which we analysed the charged particle multiplicities in leptonic and hadronic interactions at different center of mass energies in full phase space as well as in restricted phase space with the shifted Gompertz distribution, a detailed analysis of the normalized and factorial moments is reported here. A two-component model in which probability distribution function is obtained from the superposition of two shifted Gompertz distributions introduced in our earlier work has also been used for the analysis. This is the first analysis of the moments with the shifted Gompertz distribution. Analysis has also been done to predict the moments of multiplicity distribution for the electron-positron collisions at c.m. energy of 500 GeV at a future Collider.
The pseudorapidity density (dN/deta) for p+p, p+A and A+A(B) collisions, and the mean multiplicity <Nch> for ee, ep, and p+p collisions, are studied for an inclusive range of beam energies (Root_s). Characteristic scaling patterns are observed for both dN/deta and <Nch>, consistent with a thermal particle production mechanism for the bulk of the soft particles produced in all of these systems. They also validate an essential role for quark participants in these collisions. The scaled values for dN/deta and <Nch> are observed to factorize into contributions which depend on log(Root_s) and the number of nucleon or quark participant pairs (Npp). Quantification of these contributions give expressions which serve to systematize dN/deta and <Nch> measurements spanning nearly four orders of magnitude in Root_s, and to predict their values as a function of Root_s and Npp.