Do you want to publish a course? Click here

Multiplicity spectra in pp collisions at LHC energies in terms of Gamma and Tsallis distributions

73   0   0.0 ( 0 )
 Added by Manjit Kaur Dr.
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In recent years the Tsallis statistics is gaining popularity in describing charged particle produc- tion and their properties, in particular pT spectra and the multiplicities in high energy particle collisions. Motivated by its success, an analysis of the LHC data of proton-proton collisions at ener- gies ranging from 0.9 TeV to 7 TeV in different rapidity windows for charged particle multiplicities has been done. A comparative analysis is performed in terms of the Tsallis distribution, the Gamma distribution and the shifted-Gamma distribution. An interesting observation on the inapplicability of these distributions at sqrt{s}=7 TeV in the lower rapidity windows is intriguing. The non-extensive nature of the Tsallis statistics is studied by determining the entropic index and its energy depen- dence. The analysis is extrapolated to predict the multiplicity distribution at sqrt{s}=14 TeV for one rapidity window, |y| < 1.5 with the Tsallis function.



rate research

Read More

77 - S. Sharma , M. Kaur , S. Thakur 2018
Charged hadron production in the $e^{+}e^{-}$ annihilations at 91 to 206 GeV in full phase space and in $overline{p}p$ collisions at 200 to 900~GeV collision energies are studied using non-extensive Tsallis and stochastic Weibull probability distributions.~The Tsallis distribution shows better description of the data than the Weibull distribution. The 2-jet modification of the statistical distribution is applied to describe $e^{+}e^{-}$ data.~The main features of these distributions can be described by a two-component model with soft, collective interactions at low transverse energy and hard, constituent interactions dominating at high transverse energy.~This modification is found to give much better description than a full-sample fit, and again Tsallis function is found to better describe the data than the Weibull one pointing at the non-extensive character of the multiparticle production process.
Phenomenological Tsallis fits to the CMS and ATLAS transverse spectra of charged particles were found to extend for p_T from 0.5 to 181 GeV in pp collisions at LHC at sqrt{s}=7 TeV, and for p_T from 0.5 to 31 GeV at sqrt{s}=0.9 TeV. The simplicity of the Tsallis parametrization and the large range of the fitting transverse momentum raise questions on the physical meaning of the degrees of freedom that enter into the Tsallis distribution or q-statistics.
Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra of hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse momentum. We investigate whether the few degrees of freedom in the Tsallis parametrization may arise from the relativistic parton-parton hard-scattering and related processes. The effects of the multiple hard-scattering and parton showering processes on the power law are discussed. We find empirically that whereas the transverse spectra of both hadrons and jets exhibit power-law behavior of 1/pT^n at high pT, the power indices n for hadrons are systematically greater than those for jets, for which n~4-5.
Motivated by the good Tsallis fits to the high-pT spectra in pp collisions at the LHC, we study the relativistic hard-scattering model and obtain an approximate analytical expression for the differential hard-scattering cross section at eta ~ 0. The power-law behaviour of the transverse spectra, in the form of dsigma/dpT^2 propto 1/pT^n, gives a power index n in the range of 4.5-5.5 for jet production as predicted by pQCD, after the dependencies of the structure functions and the running coupling constant are properly taken into account. The power indices for hadron production n are slightly greater than those for jet production.
In this letter we estimate the contribution of the double diffractive processes for the diphoton production in $pp$ collisions at the Large Hadron Collider (LHC). The acceptance of the central and forward LHC detectors is taken into account and predictions for the invariant mass, rapidity and, transverse momentum distributions are presented. A comparison with the predictions for the Light -- by -- Light (LbL) scattering and exclusive diphoton production is performed. We demonstrate that the events associated to double diffractive processes can be separated and its study can be used to constrain the behavior of the diffractive parton distribution functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا