No Arabic abstract
This paper deals with the automatic analysis of conversations between a customer and an agent in a call centre of a customer care service. The purpose of the analysis is to hypothesize themes about problems and complaints discussed in the conversation. Themes are defined by the application documentation topics. A conversation may contain mentions that are irrelevant for the application purpose and multiple themes whose mentions may be interleaved portions of a conversation that cannot be well defined. Two methods are proposed for multiple theme hypothesization. One of them is based on a cosine similarity measure using a bag of features extracted from the entire conversation. The other method introduces the concept of thematic density distributed around specific word positions in a conversation. In addition to automatically selected words, word bi-grams with possible gaps between successive words are also considered and selected. Experimental results show that the results obtained with the proposed methods outperform the results obtained with support vector machines on the same data. Furthermore, using the theme skeleton of a conversation from which thematic densities are derived, it will be possible to extract components of an automatic conversation report to be used for improving the service performance. Index Terms: multi-topic audio document classification, hu-man/human conversation analysis, speech analytics, distance bigrams
The paper deals with the automatic analysis of real-life telephone conversations between an agent and a customer of a customer care service (ccs). The application domain is the public transportation system in Paris and the purpose is to collect statistics about customer problems in order to monitor the service and decide priorities on the intervention for improving user satisfaction. Of primary importance for the analysis is the detection of themes that are the object of customer problems. Themes are defined in the application requirements and are part of the application ontology that is implicit in the ccs documentation. Due to variety of customer population, the structure of conversations with an agent is unpredictable. A conversation may be about one or more themes. Theme mentions can be interleaved with mentions of facts that are irrelevant for the application purpose. Furthermore, in certain conversations theme mentions are localized in specific conversation segments while in other conversations mentions cannot be localized. As a consequence, approaches to feature extraction with and without mention localization are considered. Application domain relevant themes identified by an automatic procedure are expressed by specific sentences whose words are hypothesized by an automatic speech recognition (asr) system. The asr system is error prone. The word error rates can be very high for many reasons. Among them it is worth mentioning unpredictable background noise, speaker accent, and various types of speech disfluencies. As the application task requires the composition of proportions of theme mentions, a sequential decision strategy is introduced in this paper for performing a survey of the large amount of conversations made available in a given time period. The strategy has to sample the conversations to form a survey containing enough data analyzed with high accuracy so that proportions can be estimated with sufficient accuracy. Due to the unpredictable type of theme mentions, it is appropriate to consider methods for theme hypothesization based on global as well as local feature extraction. Two systems based on each type of feature extraction will be considered by the strategy. One of the four methods is novel. It is based on a new definition of density of theme mentions and on the localization of high density zones whose boundaries do not need to be precisely detected. The sequential decision strategy starts by grouping theme hypotheses into sets of different expected accuracy and coverage levels. For those sets for which accuracy can be improved with a consequent increase of coverage a new system with new features is introduced. Its execution is triggered only when specific preconditions are met on the hypotheses generated by the basic four systems. Experimental results are provided on a corpus collected in the call center of the Paris transportation system known as ratp. The results show that surveys with high accuracy and coverage can be composed with the proposed strategy and systems. This makes it possible to apply a previously published proportion estimation approach that takes into account hypothesization errors .
Quotations are crucial for successful explanations and persuasions in interpersonal communications. However, finding what to quote in a conversation is challenging for both humans and machines. This work studies automatic quotation generation in an online conversation and explores how language consistency affects whether a quotation fits the given context. Here, we capture the contextual consistency of a quotation in terms of latent topics, interactions with the dialogue history, and coherence to the query turns existing content. Further, an encoder-decoder neural framework is employed to continue the context with a quotation via language generation. Experiment results on two large-scale datasets in English and Chinese demonstrate that our quotation generation model outperforms the state-of-the-art models. Further analysis shows that topic, interaction, and query consistency are all helpful to learn how to quote in online conversations.
Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limited conditions, the manually transcribed speech required to develop standard ASR systems can be severely limited or unavailable. In this paper, we investigate alternative unsupervised solutions to obtaining tokenizations of speech in terms of a vocabulary of automatically discovered word-like or phoneme-like units, without depending on the supervised training of ASR systems. Moreover, using automatic phoneme-like tokenizations, we demonstrate that a convolutional neural network based framework for learning spoken document representations provides competitive performance compared to a standard bag-of-words representation, as evidenced by comprehensive topic ID evaluations on both single-label and multi-label classification tasks.
In topic identification (topic ID) on real-world unstructured audio, an audio instance of variable topic shifts is first broken into sequential segments, and each segment is independently classified. We first present a general purpose method for topic ID on spoken segments in low-resource languages, using a cascade of universal acoustic modeling, translation lexicons to English, and English-language topic classification. Next, instead of classifying each segment independently, we demonstrate that exploring the contextual dependencies across sequential segments can provide large improvements. In particular, we propose an attention-based contextual model which is able to leverage the contexts in a selective manner. We test both our contextual and non-contextual models on four LORELEI languages, and on all but one our attention-based contextual model significantly outperforms the context-independent models.
Automatic speech recognition (ASR) systems often need to be developed for extremely low-resource languages to serve end-uses such as audio content categorization and search. While universal phone recognition is natural to consider when no transcribed speech is available to train an ASR system in a language, adapting universal phone models using very small amounts (minutes rather than hours) of transcribed speech also needs to be studied, particularly with state-of-the-art DNN-based acoustic models. The DARPA LORELEI program provides a framework for such very-low-resource ASR studies, and provides an extrinsic metric for evaluating ASR performance in a humanitarian assistance, disaster relief setting. This paper presents our Kaldi-based systems for the program, which employ a universal phone modeling approach to ASR, and describes recipes for very rapid adaptation of this universal ASR system. The results we obtain significantly outperform results obtained by many competing approaches on the NIST LoReHLT 2017 Evaluation datasets.