Do you want to publish a course? Click here

CO Outflow Survey of 68 Very Low Luminosity Objects: a Search for Proto-Brown Dwarf Candidates

108   0   0.0 ( 0 )
 Added by Gwanjeong Kim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a systematic search for molecular outflows in 68 Very Low Luminosity Objects (VeLLOs) from single-dish observations in CO isotopologues which find 16 VeLLOs showing clear outflow signatures in the CO maps. With additional three VeLLOs from the literature, we analyzed the outflow properties for 19 VeLLOs, identifying 15 VeLLOs as proto-Brown Dwarf (BD) candidates and four VeLLOs as likely faint protostar candidates. The proto-BD candidates are found to have a mass accretion rate ($sim 10^{-8} - 10^{-7}$ $rm M_{odot}$ yr$^{-1}$) lower than that of the protostar candidates ($gtrsim 10^{-6}$ $rm M_{odot}$ yr$^{-1}$). Their accretion luminosities are similar to or smaller than their internal luminosities, implying that many proto-BD candidates might have had either small accretion activity in a quiescent manner throughout their lifetime, or be currently exhibiting a relatively higher (or episodic) mass accretion than the past. There are strong trends that outflows of many proto-BDs are less active if they are fainter or have less massive envelopes. The outflow forces and internal luminosities for more than half of the proto-BD candidates seem to follow an evolutionary track of a protostar with its initial envelope mass of $sim$0.08 $rm M_{odot}$, indicating that some BDs may form in less massive dense cores in a way similar to normal stars. But, because there also exists a significant fraction (about 40%) of proto-BDs with much weaker outflow force than expected by the relations for protostars, we should not rule out the possibility of other formation mechanism for the BDs.



rate research

Read More

We observed with the JVLA at 3.6 and 1.3 cm a sample of 11 proto-brown dwarf candidates in Taurus in a search for thermal radio jets driven by the most embedded brown dwarfs. We detected for the first time four thermal radio jets in proto-brown dwarf candidates. We compiled data from UKIDSS, 2MASS, Spitzer, WISE and Herschel to build the Spectral Energy Distribution (SED) of the objects in our sample, which are similar to typical Class~I SEDs of Young Stellar Objects (YSOs). The four proto-brown dwarf candidates driving thermal radio jets also roughly follow the well-known trend of centimeter luminosity against bolometric luminosity determined for YSOs, assuming they belong to Taurus, although they present some excess of radio emission compared to the known relation for YSOs. Nonetheless, we are able to reproduce the flux densities of the radio jets modeling the centimeter emission of the thermal radio jets using the same type of models applied to YSOs, but with corresponding smaller stellar wind velocities and mass-loss rates, and exploring different possible geometries of the wind or outflow from the star. Moreover, we also find that the modeled mass outflow rates for the bolometric luminosities of our objects agree reasonably well with the trends found between the mass outflow rates and bolometric luminosities of YSOs, which indicates that, despite the excess centimeter emission, the intrinsic properties of proto-brown dwarfs are consistent with a continuation of those of very low mass stars to a lower mass range. Overall, our study favors the formation of brown dwarfs as a scaled-down version of low-mass stars.
We present a systematic single-dish search for molecular outflows toward a sample of 9 candidate low-luminosity protostars and 30 candidate Very Low Luminosity Objects (VeLLOs; L_int < 0.1 L_sun). The sources are identified using data from the Spitzer Space Telescope catalogued by Dunham et al. toward nearby (D < 400 pc) star forming regions. Each object was observed in 12CO and 13CO J = 2-1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30 arcsecond resolution. Using 5-point grid maps we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A IRS3 outflow is detected but not remapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L$_odot$. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study this processes with very high angular resolution. This type of emission has been confirmed in objects with L$_{rm bol}ge 1$ L$_odot$. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 { (a Class 0 protostar of L$_{rm bol}simeq 3.6-5.3$ L$_odot$)}, and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L$_{rm bol}le 1$ L$_odot$, or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.
We present the results of a single dish survey toward 95 VeLLOs in optically thick (HCN 1-0) and thin ($rm N_2H^+$ 1-0) lines performed for the purpose of understanding the physical processes of inward motions in the envelopes of the VeLLOs and characterizing their true nature. The normalized velocity differences ($delta V_{HCN}$) between the peak velocities of the two lines were derived for 41 VeLLOs detected in both lines. The $delta V$ distribution of these VeLLOs is found to be significantly skewed to the blue, indicating the dominance of infalling motions in their envelopes. The infall speeds were derived for 15 infall candidates by using the HILL5 radiative transfer model. The speeds were in the range of 0.03 $rm km~s^{-1}$ to 0.3 $rm km~s^{-1}$, with a median value of 0.16 $rm km~s^{-1}$, being consistent with the gravitational free-fall speeds from pressure-free envelopes. The mass infall rates calculated from the infall speeds are mostly of the order of $10^{-6} M_{odot}~yr^{-1}$ with a median value of $rm 3.4 pm 1.5 times 10^{-6} M_{odot}~yr^{-1}$. These are found to be also consistent with the values predicted with the inside-out collapse model and show a fairly good correlation with the internal luminosities of the VeLLOs. This again indicates that the infall motions observed toward the VeLLOs are likely to be due to the gravitational infall motions in their envelopes. Our study suggests that most of the VeLLOs are potentially faint protostars while two of the VeLLOs could possibly be proto-brown dwarf candidates.
142 - Sascha P. Quanz 2009
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In this paper, we present six new candidates for (very) low-mass objects in the Taurus star-forming region one of which was recently discovered in parallel by Luhman et al. (2009). The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than four magnitudes deeper than the 2MASS survey and covers currently ~1.5 square degree. Complementary optical photometry from SDSS were available for roughly 1.0 square degree. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra we derive a spectral type of L2+/-0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models we find the effective temperature to be 2080+/-140 K and the mass 5-15 Jupiter masses. For the second source the J-band spectrum does not provide a definite proof of the young, low-mass nature of the object as the expected steep water vapor absorption at 1.33 micron is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 Jupiter masses) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا