Do you want to publish a course? Click here

First detection of thermal radio jets in a sample of proto-brown dwarf candidates

116   0   0.0 ( 0 )
 Added by Oscar Morata
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed with the JVLA at 3.6 and 1.3 cm a sample of 11 proto-brown dwarf candidates in Taurus in a search for thermal radio jets driven by the most embedded brown dwarfs. We detected for the first time four thermal radio jets in proto-brown dwarf candidates. We compiled data from UKIDSS, 2MASS, Spitzer, WISE and Herschel to build the Spectral Energy Distribution (SED) of the objects in our sample, which are similar to typical Class~I SEDs of Young Stellar Objects (YSOs). The four proto-brown dwarf candidates driving thermal radio jets also roughly follow the well-known trend of centimeter luminosity against bolometric luminosity determined for YSOs, assuming they belong to Taurus, although they present some excess of radio emission compared to the known relation for YSOs. Nonetheless, we are able to reproduce the flux densities of the radio jets modeling the centimeter emission of the thermal radio jets using the same type of models applied to YSOs, but with corresponding smaller stellar wind velocities and mass-loss rates, and exploring different possible geometries of the wind or outflow from the star. Moreover, we also find that the modeled mass outflow rates for the bolometric luminosities of our objects agree reasonably well with the trends found between the mass outflow rates and bolometric luminosities of YSOs, which indicates that, despite the excess centimeter emission, the intrinsic properties of proto-brown dwarfs are consistent with a continuation of those of very low mass stars to a lower mass range. Overall, our study favors the formation of brown dwarfs as a scaled-down version of low-mass stars.



rate research

Read More

We present the results of a systematic search for molecular outflows in 68 Very Low Luminosity Objects (VeLLOs) from single-dish observations in CO isotopologues which find 16 VeLLOs showing clear outflow signatures in the CO maps. With additional three VeLLOs from the literature, we analyzed the outflow properties for 19 VeLLOs, identifying 15 VeLLOs as proto-Brown Dwarf (BD) candidates and four VeLLOs as likely faint protostar candidates. The proto-BD candidates are found to have a mass accretion rate ($sim 10^{-8} - 10^{-7}$ $rm M_{odot}$ yr$^{-1}$) lower than that of the protostar candidates ($gtrsim 10^{-6}$ $rm M_{odot}$ yr$^{-1}$). Their accretion luminosities are similar to or smaller than their internal luminosities, implying that many proto-BD candidates might have had either small accretion activity in a quiescent manner throughout their lifetime, or be currently exhibiting a relatively higher (or episodic) mass accretion than the past. There are strong trends that outflows of many proto-BDs are less active if they are fainter or have less massive envelopes. The outflow forces and internal luminosities for more than half of the proto-BD candidates seem to follow an evolutionary track of a protostar with its initial envelope mass of $sim$0.08 $rm M_{odot}$, indicating that some BDs may form in less massive dense cores in a way similar to normal stars. But, because there also exists a significant fraction (about 40%) of proto-BDs with much weaker outflow force than expected by the relations for protostars, we should not rule out the possibility of other formation mechanism for the BDs.
We present an extension of our search for Extremely Inverted Spectrum Extragalactic Radio Sources (EISERS) to the northern celestial hemisphere. With an inverted radio spectrum of slope $alpha$ > +2.5, these rare sources would either require a non-standard particle acceleration mechanism (in the framework of synchrotron self-absorption hypothesis), or a severe free-free absorption which attenuates practically all of their synchrotron radiation at metre wavelengths. By applying a sequence of selection filters, a list of 15 EISERS candidates is extracted out by comparing two large-sky radio surveys, WENSS (325 MHz) and TGSS-ADR1 (150 MHz), which overlap across 1.03$pi$ steradian of the sky. Here we report quasi-simultaneous GMRT observations of these 15 EISERS candidates at 150 MHz and 325 MHz, in an attempt to accurately define their spectra below the turnover frequency. Out of the 15 candidates observed, two are confirmed as EISERS, since the slope of the inverted spectrum between these two frequencies is found to be significantly larger than the critical value $alpha_c$ = +2.5: the theoretical limit for the standard case of synchrotron self-absorption (SSA). For another 3 sources, the spectral slope is close to, or just above the critical value $alpha_c$. Nine of the sources have GPS type radio spectra. The parsec-scale radio structural information available for the sample is also summarised.
473 - D. Apai 2005
We present deep HST/NICMOS observations peering through the outflow cavity of the protostellar candidate IRAS 04381+2540 in the Taurus Molecular Cloud-1. A young stellar object as central source, a jet and a very faint and close (0.6) companion are identified. The primary and the companion have similar colours, consistent with strong reddening. We argue that the companion is neither a shock-excited knot nor a background star. The colour/magnitude information predicts a substellar upper mass limit for the companion, but the final confirmation will require spectroscopic information. Because of its geometry, young age and its rare low-mass companion, this system is likely to provide a unique insight into the formation of brown dwarfs.
We have performed deep, wide-field imaging on a ~0.4 deg^2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ~ 22mag and I ~ 20mag, sufficient to detect brown dwarf candidates down to 40MJ. We found 197 objects, whose location in the (I, R - I) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co-add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two-dimensional chi^22 fitting.
Magnetospheric processes seen in gas-giants such as aurorae and circularly-polarized cyclotron maser radio emission have been detected from some brown dwarfs. However, previous radio observations targeted known brown dwarfs discovered via their infrared emission. Here we report the discovery of BDR J1750+3809, a circularly polarized radio source detected around 144 MHz with the LOFAR telescope. Follow-up near-infrared photometry and spectroscopy show that BDR J1750+3809 is a cold methane dwarf of spectral type T$6.5pm 1$ at a distance of $65^{+9}_{-8},{rm pc}$. The quasi-quiescent radio spectral luminosity of BDR J1750+3809 is $approx 5times 10^{15},{rm erg},{rm s}^{-1},{rm Hz}^{-1}$ which is over two orders of magnitude larger than that of the known population of comparable spectral type. This could be due to a preferential geometric alignment or an electrodynamic interaction with a close companion. In addition, as the emission is expected to occur close to the electron gyro-frequency, the magnetic field strength at the emitter site in BDR J1750+3809 is $Bgtrsim 25,{rm G}$, which is comparable to planetary-scale magnetic fields. Our discovery suggests that low-frequency radio surveys can be employed to discover sub-stellar objects that are too cold to be detected in infrared surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا