Do you want to publish a course? Click here

Testing Dark Matter and Modifications to Gravity using Local Milky Way Observables

99   0   0.0 ( 0 )
 Added by Matthew Moschella
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galactic rotation curves are often considered the first robust evidence for the existence of dark matter. However, even in the presence of a dark matter halo, other galactic-scale observations, such as the Baryonic Tully-Fisher Relation and the Radial Acceleration Relation, remain challenging to explain. This has motivated long-distance, infrared modifications to gravity as an alternative to the dark matter hypothesis as well as various DM theories with similar phenomenology. In general, the standard lore has been that any model that reduces to the phenomenology of MOdified Newtonian Dynamics (MOND) on galactic scales explains essentially all galaxy-scale observables. We present a framework to test precisely this statement using local Milky Way observables, including the vertical acceleration field, the rotation curve, the baryonic surface density, and the stellar disk profile. We focus on models that predict scalar amplifications of gravity, i.e., models that increase the magnitude but do not change the direction of the gravitational acceleration. We find that models of this type are disfavored relative to a simple dark matter halo model because the Milky Way data requires a substantial amplification of the radial acceleration with little amplification of the vertical acceleration. We conclude that models which result in a MOND-like force struggle to simultaneously explain both the rotational velocity and vertical motion of nearby stars in the Milky Way.



rate research

Read More

We study high-resolution hydrodynamic simulations of Milky Way type galaxies obtained within the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project, and identify the those that best satisfy observational constraints on the Milky Way total stellar mass, rotation curve, and galaxy shape. Contrary to mock galaxies selected on the basis of their total virial mass, the Milky Way analogues so identified consistently exhibit very similar dark matter profiles inside the solar circle, therefore enabling more accurate predictions for indirect dark matter searches. We find in particular that high resolution simulated haloes satisfying observational constraints exhibit, within the inner few kiloparsecs, dark matter profiles shallower than those required to explain the so-called Fermi GeV excess via dark matter annihilation.
265 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
80 - Jesus Zavala 2019
Milky Way (MW) satellites reside within dark matter (DM) subhalos with a broad distribution of circular velocity profiles. This diversity is enhanced with the inclusion of ultra-faint satellites, which seemingly have very high DM densities, albeit with large systematic uncertainties. We argue that if confirmed, this large diversity in the MW satellite population poses a serious test for the structure formation theory with possible implications for the DM nature. For the Cold Dark Matter model, the diversity might be a signature of the combined effects of subhalo tidal disruption by the MW disk and strong supernova feedback. For models with a dwarf-scale cutoff in the power spectrum, the diversity is a consequence of the lower abundance of dwarf-scale halos. This diversity is most challenging for Self-Interacting Dark Matter (SIDM) models with cross sections $sigma/m_chigtrsim1~$cm$^2$g$^{-1}$ where subhalos have too low densities to explain the ultra-faint galaxies. We propose a novel solution to explain the diversity of MW satellites based on the gravothermal collapse of SIDM haloes. This solution requires a velocity-dependent cross section that predicts a bimodal distribution of cuspy dense (collapsed) subhaloes consistent with the ultra-faint satellites, and cored lower density subhaloes consistent with the brighter satellites.
199 - Wenting Wang 2015
The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar halos constructed from the Aquarius N-body simulations of dark matter halos in the $Lambda$CDM cosmology. We extend the standard treatment to include a Navarro-Frenk-White (NFW) potential and use a maximum likelihood method to recover the parameters describing the simulated halos from the positions and velocities of their mock halo stars. We find that the estimate of halo mass is highly correlated with the estimate of halo concentration. The best-fit halo masses within the virial radius, $R_{200}$, are biased, ranging from a 40% underestimate to a 5% overestimate in the best case (when the tangential velocities of the tracers are included). There are several sources of bias. Deviations from dynamical equilibrium can potentially cause significant bias; deviations from spherical symmetry are relatively less important. Fits to stars at different galactocentric radii can give different mass estimates. By contrast, the model gives good constraints on the mass within the half-mass radius of tracers even when restricted to tracers within 60kpc. The recovered velocity anisotropies of tracers, $beta$, are biased systematically, but this does not affect other parameters if tangential velocity data are used as constraints.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have similar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا