Do you want to publish a course? Click here

Towards high-temperature coherence-enhanced transport in few-atomic layers heterostructures

88   0   0.0 ( 0 )
 Added by Chahan M. Kropf
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possibility to exploit quantum coherence to strongly enhance the efficiency of charge transport in solid state devices working at ambient conditions would pave the way to disruptive technological applications. In this work, we tackle the problem of the quantum transport of photogenerated electronic excitations subject to dephasing and on-site Coulomb interactions. We show that the transport to a continuum of states representing metallic collectors can be optimized by exploiting the superradiance phenomena. We demonstrate that this is a coherent effect which is robust against dephasing and electron-electron interactions in a parameters range that is compatible with actual implementation in few monolayers transition-metal-oxide (TMO) heterostructures.



rate research

Read More

In high-T$_{C}$ cuprates, superconductivity and charge density waves (CDW) are competitive, yet coexisting orders. To understand their microscopic interdependence a probe capable of discerning their interaction on its natural length and time scales is necessary. Here we use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa$_{2}$Cu$_{3}$O$_{6+x}$ following the quench of superconductivity by an infrared laser pulse. We observe a picosecond non-thermal response of the CDW order, characterized by a large enhancement of spatial coherence, nearly doubling the CDW correlation length, while only marginally affecting its amplitude. This ultrafast snapshot of the interaction between order parameters demonstrates that their competition manifests inhomogeneously through disruption of spatial coherence, and indicates the role of superconductivity in stabilizing topological defects within CDW domains.
Excitonic insulators (EI) arise from the formation of bound electron-hole pairs (excitons) in semiconductors and provide a solid-state platform for quantum many-boson physics. Strong exciton-exciton repulsion is expected to stabilize condensed superfluid and crystalline phases by suppressing both density and phase fluctuations. Although spectroscopic signatures of EIs have been reported, conclusive evidence for strongly correlated EI states has remained elusive. Here, we demonstrate a strongly correlated spatially indirect two-dimensional (2D) EI ground state formed in transition metal dichalcogenide (TMD) semiconductor double layers. An equilibrium interlayer exciton fluid is formed when the bias voltage applied between the two electrically isolated TMD layers, is tuned to a range that populates bound electron-hole pairs, but not free electrons or holes. Capacitance measurements show that the fluid is exciton-compressible but charge-incompressible - direct thermodynamic evidence of the EI. The fluid is also strongly correlated with a dimensionless exciton coupling constant exceeding 10. We further construct an exciton phase diagram that reveals both the Mott transition and interaction-stabilized quasi-condensation. Our experiment paves the path for realizing the exotic quantum phases of excitons, as well as multi-terminal exciton circuitry for applications.
We show that exciton-type transport in certain materials can be dramatically modified by their inclusion in an optical cavity: the modification of the electromagnetic vacuum mode structure introduced by the cavity leads to transport via delocalized polariton modes rather than through tunneling processes in the material itself. This can help overcome exponential suppression of transmission properties as a function of the system size in the case of disorder and other imperfections. We exemplify massive improvement of transmission for excitonic wave-packets through a cavity, as well as enhancement of steady-state exciton currents under incoherent pumping. These results may have implications for experiments of exciton transport in disordered organic materials. We propose that the basic phenomena can be observed in quantum simulators made of Rydberg atoms, cold molecules in optical lattices, as well as in experiments with trapped ions.
Quantum fluctuations of the electromagnetic vacuum are responsible for physical effects such as the Casimir force and the radiative decay of atoms, and set fundamental limits on the sensitivity of measurements. Entanglement between photons can produce correlations that result in a reduction of these fluctuations below the vacuum level allowing measurements that surpass the standard quantum limit in sensitivity. Here we demonstrate that the radiative decay rate of an atom that is coupled to quadrature squeezed electromagnetic vacuum can be reduced below its natural linewidth. We observe a two-fold reduction of the transverse radiative decay rate of a superconducting artificial atom coupled to continuum squeezed vacuum generated by a Josephson parametric amplifier, allowing the transverse coherence time T_2 to exceed the vacuum decay limit of 2T_1. We demonstrate that the measured radiative decay dynamics can be used to tomographically reconstruct the Wigner distribution of the the itinerant squeezed state. Our results are the first confirmation of a canonical prediction of quantum optics and open the door to new studies of the quantum light-matter interaction.
We study the propagation of photons in a one-dimensional environment consisting of two non-interacting species of photons frustratingly coupled to a single spin-1/2. The ultrastrong frustrated coupling leads to an extreme mixing of the light and matter degrees of freedom, resulting in the disintegration of the spin and a breakdown of the dressed-spin, or polaron, description. Using a combination of numerical and analytical methods, we show that the elastic response becomes increasingly weak at the effective spin frequency, showing instead an increasingly strong and broadband response at higher energies. We also show that the photons can decay into multiple photons of smaller energies. The total probability of these inelastic processes can be as large as the total elastic scattering rate, or half of the total scattering rate, which is as large as it can be. The frustrated spin induces strong anisotropic photon-photon interactions that are dominated by inter-species interactions. Our results are relevant to state-of-the-art circuit and cavity quantum electrodynamics experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا