No Arabic abstract
We show that exciton-type transport in certain materials can be dramatically modified by their inclusion in an optical cavity: the modification of the electromagnetic vacuum mode structure introduced by the cavity leads to transport via delocalized polariton modes rather than through tunneling processes in the material itself. This can help overcome exponential suppression of transmission properties as a function of the system size in the case of disorder and other imperfections. We exemplify massive improvement of transmission for excitonic wave-packets through a cavity, as well as enhancement of steady-state exciton currents under incoherent pumping. These results may have implications for experiments of exciton transport in disordered organic materials. We propose that the basic phenomena can be observed in quantum simulators made of Rydberg atoms, cold molecules in optical lattices, as well as in experiments with trapped ions.
We discuss a hybrid quantum system where a dielectric membrane situated inside an optical cavity is coupled to a distant atomic ensemble trapped in an optical lattice. The coupling is mediated by the exchange of sideband photons of the lattice laser, and is enhanced by the cavity finesse as well as the square root of the number of atoms. In addition to observing coherent dynamics between the two systems, one can also switch on a tailored dissipation by laser cooling the atoms, thereby allowing for sympathetic cooling of the membrane. The resulting cooling scheme does not require resolved sideband conditions for the cavity, which relaxes a constraint present in standard optomechanical cavity cooling. We present a quantum mechanical treatment of this modular open system which takes into account the dominant imperfections, and identify optimal operation points for both coherent dynamics and sympathetic cooling. In particular, we find that ground state cooling of a cryogenically pre-cooled membrane is possible for realistic parameters.
We study a disordered ensemble of quantum emitters collectively coupled to a lossless cavity mode. The latter is found to modify the localization properties of the dark eigenstates, which exhibit a character of being localized on multiple, noncontiguous sites. We denote such states as semi-localized and characterize them by means of standard localization measures. We show that those states can very efficiently contribute to coherent energy transport. Our paper underlines the important role of dark states in systems with strong light-matter coupling.
We study nonlinear cavity arrays where the particle relaxation rate in each cavity increases with the excitation number. We show that coherent parametric inputs can drive such arrays into states with commensurate filling that form non-equilibrium analogs of Mott insulating states. We explore the boundaries of the Mott insulating phase and the transition to a delocalized phase with spontaneous first order coherence. While sharing many similarities with the Mott insulator to superfluid transition in equilibrium, the phase-diagrams we find also show marked differences. Particularly the off diagonal order does not become long range since the influence of dephasing processes increases with increasing tunneling rates.
We study the dynamics of two ensembles of atoms (or equivalently, atomic clocks) coupled to a bad cavity and pumped incoherently by a Raman laser. Our main result is the nonequilibrium phase diagram for this experimental setup in terms of two parameters - detuning between the clocks and the repump rate. There are three main phases - trivial steady state (Phase I), where all atoms are maximally pumped, nontrivial steady state corresponding to monochromatic superradiance (Phase II), and amplitude-modulated superradiance (Phase III). Phases I and II are fixed points of the mean-field dynamics, while in most of Phase III stable attractors are limit cycles. Equations of motion possess an axial symmetry and a $mathbb{Z}_{2}$ symmetry with respect to the interchange of the two clocks. Either one or both of these symmetries are spontaneously broken in various phases. The trivial steady state loses stability via a supercritical Hopf bifurcation bringing about a $mathbb{Z}_{2}$-symmetric limit cycle. The nontrivial steady state goes through a subcritical Hopf bifurcation responsible for coexistence of monochromatic and amplitude-modulated superradiance. Using Floquet analysis, we show that the $mathbb{Z}_{2}$-symmetric limit cycle eventually becomes unstable and gives rise to two $mathbb{Z}_{2}$-asymmetric limit cycles via a supercritical pitchfork bifurcation. Each of the above attractors has its own unique fingerprint in the power spectrum of the light radiated from the cavity. In particular, limit cycles in Phase III emit frequency combs - series of equidistant peaks, where the symmetry of the frequency comb reflects the symmetry of the underlying limit cycle. For typical experimental parameters, the spacing between the peaks is several orders of magnitude smaller than the monochromatic superradiance frequency, making the lasing frequency highly tunable.
We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042,nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT/$sqrt{rm{Hz}}$, a projected photon shot-noise-limited sensitivity of 22 pT/$sqrt{rm{Hz}}$ and an estimated quantum projection-noise-limited sensitivity of 0.43 pT/$sqrt{rm{Hz}}$ with the sensing volume of $sim$ 390 $mu$m $times$ 4500 $mu$m$^{2}$. The presented miniaturized device is the basis for an endoscopic magnetic field sensor for biomedical applications.