Do you want to publish a course? Click here

Neutron star cooling with microscopic equations of state

70   0   0.0 ( 0 )
 Added by Jinbiao Wei
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We model neutron star cooling with several microscopic nuclear equations of state based on different nucleon-nucleon interactions and three-body forces, and compatible with the recent GW170817 neutron star merger event. They all feature strong direct Urca processes. We find that all models are able to describe well the current set of cooling data for isolated neutron stars, provided that large and extended proton 1S0 gaps and no neutron 3PF2 gaps are active in the stellar matter. We then analyze the neutron star mass distributions predicted by the different models and single out the preferred ones.



rate research

Read More

We calculate neutron stars moment of inertia and deformabilities using various microscopic equations of state for nuclear and hybrid star configurations. Correlations between the various observables are examined and we confirm several universal relations. We focus in particular on the constraints for the neutron star radii imposed by a determination of the average tidal deformability of the binary neutron star system GW170817. We find compatible radii between 12 and 13 kilometers and identify the suitable equations of state.
Observations of isolated neutron stars place constraints on the equation of state (EOS) of cold, neutron-rich matter, while nuclear physics experiments probe the EOS of hot, symmetric matter. Many dynamical phenomena, such as core-collapse supernovae, the formation and cooling of proto-neutron stars, and neutron star mergers, lie between these two regimes and depend on the EOS at finite temperatures for matter with varying proton fractions. In this paper, we introduce a new framework to accurately calculate the thermal pressure of neutron-proton-electron matter at arbitrary density, temperature, and proton fraction. This framework can be expressed using a set of five physically-motivated parameters that span a narrow range of values for realistic EOS and are able to capture the leading-order effects of degenerate matter on the thermal pressure. We base two of these parameters on a new approximation of the Dirac effective mass, with which we reproduce the thermal pressure to within <~30% for a variety of realistic EOS at densities of interest. Three additional parameters, based on the behavior of the symmetry energy near the nuclear saturation density, allow for the extrapolation of any cold EOS in beta-equilibrium to arbitrary proton fractions. Our model thus allows a user to extend any cold nucleonic EOS, including piecewise-polytropes, to arbitrary temperature and proton fraction, for use in calculations and numerical simulations of astrophysical phenomena. We find that our formalism is able to reproduce realistic finite-temperature EOS with errors of <~20% and offers a 1-3 orders-of-magnitude improvement over existing ideal-fluid models.
We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner-Hartree-Fock approach with different quark models. We then analyze the neutron star cooling curves predicted by the different models and single out the preferred ones. We find that the possibility of neutron p-wave pairing can be excluded in our scenario.
126 - D. G. Yakovlev 2004
The impact of nuclear physics theories on cooling of isolated neutron stars is analyzed. Physical properties of neutron star matter important for cooling are reviewed such as composition, the equation of state, superfluidity of various baryon species, neutrino emission mechanisms. Theoretical results are compared with observations of thermal radiation from neutron stars. Current constraints on theoretical models of dense matter, derived from such a comparison, are formulated.
75 - A. Figura , F. Li , J.-J. Lu 2021
We perform binary neutron star merger simulations using a newly derived set of finite-temperature equations of state in the Brueckner-Hartree-Fock approach. We point out the important and opposite roles of finite temperature and rotation for stellar stability and systematically investigate the gravitational-wave properties, matter distribution, and ejecta properties in the postmerger phase for the different cases. The validity of several universal relations is also examined and the most suitable EOSs are identified.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا