We calculate neutron stars moment of inertia and deformabilities using various microscopic equations of state for nuclear and hybrid star configurations. Correlations between the various observables are examined and we confirm several universal relations. We focus in particular on the constraints for the neutron star radii imposed by a determination of the average tidal deformability of the binary neutron star system GW170817. We find compatible radii between 12 and 13 kilometers and identify the suitable equations of state.
We model neutron star cooling with several microscopic nuclear equations of state based on different nucleon-nucleon interactions and three-body forces, and compatible with the recent GW170817 neutron star merger event. They all feature strong direct Urca processes. We find that all models are able to describe well the current set of cooling data for isolated neutron stars, provided that large and extended proton 1S0 gaps and no neutron 3PF2 gaps are active in the stellar matter. We then analyze the neutron star mass distributions predicted by the different models and single out the preferred ones.
Observations of isolated neutron stars place constraints on the equation of state (EOS) of cold, neutron-rich matter, while nuclear physics experiments probe the EOS of hot, symmetric matter. Many dynamical phenomena, such as core-collapse supernovae, the formation and cooling of proto-neutron stars, and neutron star mergers, lie between these two regimes and depend on the EOS at finite temperatures for matter with varying proton fractions. In this paper, we introduce a new framework to accurately calculate the thermal pressure of neutron-proton-electron matter at arbitrary density, temperature, and proton fraction. This framework can be expressed using a set of five physically-motivated parameters that span a narrow range of values for realistic EOS and are able to capture the leading-order effects of degenerate matter on the thermal pressure. We base two of these parameters on a new approximation of the Dirac effective mass, with which we reproduce the thermal pressure to within <~30% for a variety of realistic EOS at densities of interest. Three additional parameters, based on the behavior of the symmetry energy near the nuclear saturation density, allow for the extrapolation of any cold EOS in beta-equilibrium to arbitrary proton fractions. Our model thus allows a user to extend any cold nucleonic EOS, including piecewise-polytropes, to arbitrary temperature and proton fraction, for use in calculations and numerical simulations of astrophysical phenomena. We find that our formalism is able to reproduce realistic finite-temperature EOS with errors of <~20% and offers a 1-3 orders-of-magnitude improvement over existing ideal-fluid models.
We perform binary neutron star merger simulations using a newly derived set of finite-temperature equations of state in the Brueckner-Hartree-Fock approach. We point out the important and opposite roles of finite temperature and rotation for stellar stability and systematically investigate the gravitational-wave properties, matter distribution, and ejecta properties in the postmerger phase for the different cases. The validity of several universal relations is also examined and the most suitable EOSs are identified.
We study the properties of hot beta-stable nuclear matter using equations of state derived within the Brueckner-Hartree-Fock approach at finite temperature including consistent three-body forces. Simple and accurate parametrizations of the finite-temperature equations of state are provided. The properties of hot neutron stars are then investigated within this framework, in particular the temperature dependence of the maximum mass. We find very small temperature effects and analyze the interplay of the different contributions.
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of $1.4~mathrm{M}_{odot}$ neutron stars to a be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.