We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner-Hartree-Fock approach with different quark models. We then analyze the neutron star cooling curves predicted by the different models and single out the preferred ones. We find that the possibility of neutron p-wave pairing can be excluded in our scenario.
We study the properties of hot beta-stable nuclear matter using equations of state derived within the Brueckner-Hartree-Fock approach at finite temperature including consistent three-body forces. Simple and accurate parametrizations of the finite-temperature equations of state are provided. The properties of hot neutron stars are then investigated within this framework, in particular the temperature dependence of the maximum mass. We find very small temperature effects and analyze the interplay of the different contributions.
We model neutron star cooling with several microscopic nuclear equations of state based on different nucleon-nucleon interactions and three-body forces, and compatible with the recent GW170817 neutron star merger event. They all feature strong direct Urca processes. We find that all models are able to describe well the current set of cooling data for isolated neutron stars, provided that large and extended proton 1S0 gaps and no neutron 3PF2 gaps are active in the stellar matter. We then analyze the neutron star mass distributions predicted by the different models and single out the preferred ones.
We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid critical temperature, the best fit proton singlet superconducting critical temperature, and their associated statistical uncertainties. We find that the neutron triplet critical temperature is likely $2.09^{+4.37}_{-1.41} times 10^{8}$ K and that the proton singlet critical temperature is $7.59^{+2.48}_{-5.81} times 10^{9}$ K. However, we also show that this result only holds if the Vela neutron star is not included in the data set. If Vela is included, the gaps increase significantly to attempt to reproduce Velas lower temperature given its young age. Further including neutron stars believed to have carbon atmospheres increases the neutron critical temperature and decreases the proton critical temperature. Our method demonstrates that continued observations of isolated neutron stars can quantitatively constrain the nature of superfluidity in dense matter.
Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not only probed in astrophysical observations, but also in terrestrial heavy-ion collision experiments. In this work, we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars and from heavy-ion collisions of gold nuclei at relativistic energies with microscopic nuclear theory calculations to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent NICER observations. Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment, and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars.
We use covariant density functional theory to obtain the equation of state (EoS) of matter in compact stars at non-zero temperature, including the full baryon octet as well as the $Delta(1232)$ resonance states. Global properties of hot $Delta$-admixed hypernuclear stars are computed for fixed values of entropy per baryon ($S/A$) and lepton fraction ($Y_L$). Universal relations between the moment of inertia, quadrupole moment, tidal deformability, and compactness of compact stars are established for fixed values of $S/A$ and $Y_L$ that are analogous to those known for cold catalyzed compact stars. We also verify that the $I$-Love-$Q$ relations hold at finite temperature for constant values of $S/A$ and $Y_L$.