No Arabic abstract
The effectiveness of learning in massive open online courses (MOOCs) can be significantly enhanced by introducing personalized intervention schemes which rely on building predictive models of student learning behaviors such as some engagement or performance indicators. A major challenge that has to be addressed when building such models is to design handcrafted features that are effective for the prediction task at hand. In this paper, we make the first attempt to solve the feature learning problem by taking the unsupervised learning approach to learn a compact representation of the raw features with a large degree of redundancy. Specifically, in order to capture the underlying learning patterns in the content domain and the temporal nature of the clickstream data, we train a modified auto-encoder (AE) combined with the long short-term memory (LSTM) network to obtain a fixed-length embedding for each input sequence. When compared with the original features, the new features that correspond to the embedding obtained by the modified LSTM-AE are not only more parsimonious but also more discriminative for our prediction task. Using simple supervised learning models, the learned features can improve the prediction accuracy by up to 17% compared with the supervised neural networks and reduce overfitting to the dominant low-performing group of students, specifically in the task of predicting students performance. Our approach is generic in the sense that it is not restricted to a specific supervised learning model nor a specific prediction task for MOOC learning analytics.
In a Massive Open Online Course (MOOC), predictive models of student behavior can support multiple aspects of learning, including instructor feedback and timely intervention. Ongoing courses, when the student outcomes are yet unknown, must rely on models trained from the historical data of previously offered courses. It is possible to transfer models, but they often have poor prediction performance. One reason is features that inadequately represent predictive attributes common to both courses. We present an automated transductive transfer learning approach that addresses this issue. It relies on problem-agnostic, temporal organization of the MOOC clickstream data, where, for each student, for multiple courses, a set of specific MOOC event types is expressed for each time unit. It consists of two alternative transfer methods based on representation learning with auto-encoders: a passive approach using transductive principal component analysis and an active approach that uses a correlation alignment loss term. With these methods, we investigate the transferability of dropout prediction across similar and dissimilar MOOCs and compare with known methods. Results show improved model transferability and suggest that the methods are capable of automatically learning a feature representation that expresses common predictive characteristics of MOOCs.
Predictive models -- learned from observational data not covering the complete data distribution -- can rely on spurious correlations in the data for making predictions. These correlations make the models brittle and hinder generalization. One solution for achieving strong generalization is to incorporate causal structures in the models; such structures constrain learning by ignoring correlations that contradict them. However, learning these structures is a hard problem in itself. Moreover, its not clear how to incorporate the machinery of causality with online continual learning. In this work, we take an indirect approach to discovering causal models. Instead of searching for the true causal model directly, we propose an online algorithm that continually detects and removes spurious features. Our algorithm works on the idea that the correlation of a spurious feature with a target is not constant over-time. As a result, the weight associated with that feature is constantly changing. We show that by continually removing such features, our method converges to solutions that have strong generalization. Moreover, our method combined with random search can also discover non-spurious features from raw sensory data. Finally, our work highlights that the information present in the temporal structure of the problem -- destroyed by shuffling the data -- is essential for detecting spurious features online.
Massive open online courses (MOOC) describe platforms where users with completely different backgrounds subscribe to various courses on offer. MOOC forums and discussion boards offer learners a medium to communicate with each other and maximize their learning outcomes. However, oftentimes learners are hesitant to approach each other for different reasons (being shy, dont know the right match, etc.). In this paper, we propose a reciprocal recommender system which matches learners who are mutually interested in, and likely to communicate with each other based on their profile attributes like age, location, gender, qualification, interests, etc. We test our algorithm on data sampled using the publicly available MITx-Harvardx dataset and demonstrate that both attribute importance and reciprocity play an important role in forming the final recommendation list of learners. Our approach provides promising results for such a system to be implemented within an actual MOOC.
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works, and then use this learned model to plan coordinated sequences of actions to bring about desired outcomes. However, learning a model that captures the dynamics of complex skills represents a major challenge: if the agent needs a good model to perform these skills, it might never be able to collect the experience on its own that is required to learn these delicate and complex behaviors. Instead, we can imagine augmenting the training set with observational data of other agents, such as humans. Such data is likely more plentiful, but represents a different embodiment. For example, videos of humans might show a robot how to use a tool, but (i) are not annotated with suitable robot actions, and (ii) contain a systematic distributional shift due to the embodiment differences between humans and robots. We address the first challenge by formulating the corresponding graphical model and treating the action as an observed variable for the interaction data and an unobserved variable for the observation data, and the second challenge by using a domain-dependent prior. In addition to interaction data, our method is able to leverage videos of passive observations in a driving dataset and a dataset of robotic manipulation videos. A robotic planning agent equipped with our method can learn to use tools in a tabletop robotic manipulation setting by observing humans without ever seeing a robotic video of tool use.
Crucial for building trust in deep learning models for critical real-world applications is efficient and theoretically sound uncertainty quantification, a task that continues to be challenging. Useful uncertainty information is expected to have two key properties: It should be valid (guaranteeing coverage) and discriminative (more uncertain when the expected risk is high). Moreover, when combined with deep learning (DL) methods, it should be scalable and affect the DL model performance minimally. Most existing Bayesian methods lack frequentist coverage guarantees and usually affect model performance. The few available frequentist methods are rarely discriminative and/or violate coverage guarantees due to unrealistic assumptions. Moreover, many methods are expensive or require substantial modifications to the base neural network. Building upon recent advances in conformal prediction [13, 31] and leveraging the classical idea of kernel regression, we propose Locally Valid and Discriminative predictive intervals (LVD), a simple, efficient, and lightweight method to construct discriminative predictive intervals (PIs) for almost any DL model. With no assumptions on the data distribution, such PIs also offer finite-sample local coverage guarantees (contrasted to the simpler marginal coverage). We empirically verify, using diverse datasets, that besides being the only locally valid method, LVD also exceeds or matches the performance (including coverage rate and prediction accuracy) of existing uncertainty quantification methods, while offering additional benefits in scalability and flexibility.