Do you want to publish a course? Click here

Transfer Learning using Representation Learning in Massive Open Online Courses

101   0   0.0 ( 0 )
 Added by Mucong Ding
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In a Massive Open Online Course (MOOC), predictive models of student behavior can support multiple aspects of learning, including instructor feedback and timely intervention. Ongoing courses, when the student outcomes are yet unknown, must rely on models trained from the historical data of previously offered courses. It is possible to transfer models, but they often have poor prediction performance. One reason is features that inadequately represent predictive attributes common to both courses. We present an automated transductive transfer learning approach that addresses this issue. It relies on problem-agnostic, temporal organization of the MOOC clickstream data, where, for each student, for multiple courses, a set of specific MOOC event types is expressed for each time unit. It consists of two alternative transfer methods based on representation learning with auto-encoders: a passive approach using transductive principal component analysis and an active approach that uses a correlation alignment loss term. With these methods, we investigate the transferability of dropout prediction across similar and dissimilar MOOCs and compare with known methods. Results show improved model transferability and suggest that the methods are capable of automatically learning a feature representation that expresses common predictive characteristics of MOOCs.



rate research

Read More

The effectiveness of learning in massive open online courses (MOOCs) can be significantly enhanced by introducing personalized intervention schemes which rely on building predictive models of student learning behaviors such as some engagement or performance indicators. A major challenge that has to be addressed when building such models is to design handcrafted features that are effective for the prediction task at hand. In this paper, we make the first attempt to solve the feature learning problem by taking the unsupervised learning approach to learn a compact representation of the raw features with a large degree of redundancy. Specifically, in order to capture the underlying learning patterns in the content domain and the temporal nature of the clickstream data, we train a modified auto-encoder (AE) combined with the long short-term memory (LSTM) network to obtain a fixed-length embedding for each input sequence. When compared with the original features, the new features that correspond to the embedding obtained by the modified LSTM-AE are not only more parsimonious but also more discriminative for our prediction task. Using simple supervised learning models, the learned features can improve the prediction accuracy by up to 17% compared with the supervised neural networks and reduce overfitting to the dominant low-performing group of students, specifically in the task of predicting students performance. Our approach is generic in the sense that it is not restricted to a specific supervised learning model nor a specific prediction task for MOOC learning analytics.
Massive open online courses (MOOC) describe platforms where users with completely different backgrounds subscribe to various courses on offer. MOOC forums and discussion boards offer learners a medium to communicate with each other and maximize their learning outcomes. However, oftentimes learners are hesitant to approach each other for different reasons (being shy, dont know the right match, etc.). In this paper, we propose a reciprocal recommender system which matches learners who are mutually interested in, and likely to communicate with each other based on their profile attributes like age, location, gender, qualification, interests, etc. We test our algorithm on data sampled using the publicly available MITx-Harvardx dataset and demonstrate that both attribute importance and reciprocity play an important role in forming the final recommendation list of learners. Our approach provides promising results for such a system to be implemented within an actual MOOC.
87 - Guokun Chi , Min Jiang , Xing Gao 2019
Transfer learning techniques have been widely used in the reality that it is difficult to obtain sufficient labeled data in the target domain, but a large amount of auxiliary data can be obtained in the relevant source domain. But most of the existing methods are based on offline data. In practical applications, it is often necessary to face online learning problems in which the data samples are achieved sequentially. In this paper, We are committed to applying the ensemble approach to solving the problem of online transfer learning so that it can be used in anytime setting. More specifically, we propose a novel online transfer learning framework, which applies the idea of online bagging methods to anytime transfer learning problems, and constructs strong classifiers through online iterations of the usefulness of multiple weak classifiers. Further, our algorithm also provides two extension schemes to reduce the impact of negative transfer. Experiments on three real data sets show that the effectiveness of our proposed algorithms.
119 - Yuntao Du , Zhiwen Tan , Qian Chen 2019
Transfer learning has been demonstrated to be successful and essential in diverse applications, which transfers knowledge from related but different source domains to the target domain. Online transfer learning(OTL) is a more challenging problem where the target data arrive in an online manner. Most OTL methods combine source classifier and target classifier directly by assigning a weight to each classifier, and adjust the weights constantly. However, these methods pay little attention to reducing the distribution discrepancy between domains. In this paper, we propose a novel online transfer learning method which seeks to find a new feature representation, so that the marginal distribution and conditional distribution discrepancy can be online reduced simultaneously. We focus on online transfer learning with multiple source domains and use the Hedge strategy to leverage knowledge from source domains. We analyze the theoretical properties of the proposed algorithm and provide an upper mistake bound. Comprehensive experiments on two real-world datasets show that our method outperforms state-of-the-art methods by a large margin.
Online learning is a powerful tool for analyzing iterative algorithms. However, the classic adversarial setup sometimes fails to capture certain regularity in online problems in practice. Motivated by this, we establish a new setup, called Continuous Online Learning (COL), where the gradient of online loss function changes continuously across rounds with respect to the learners decisions. We show that COL covers and more appropriately describes many interesting applications, from general equilibrium problems (EPs) to optimization in episodic MDPs. Using this new setup, we revisit the difficulty of achieving sublinear dynamic regret. We prove that there is a fundamental equivalence between achieving sublinear dynamic regret in COL and solving certain EPs, and we present a reduction from dynamic regret to both static regret and convergence rate of the associated EP. At the end, we specialize these new insights into online imitation learning and show improved understanding of its learning stability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا