Do you want to publish a course? Click here

Half-metallicity in quaternary Heusler alloys with 3$d$ and 4$d$ elements: observations and insights from DFT calculations

86   0   0.0 ( 0 )
 Added by Subhradip Ghosh
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we provide important insights into the evolution of half-metallicity in quaternary Heusler alloys. Employing {it ab initio} electronic structure methods we study 18 quaternary Heusler compounds having the chemical formula CoX$^prime$Y$^prime$Al, where Y$^prime$ = Mn, Fe; and X$^prime$ a 4$d$ element. Along with the search for new materials for spintronics applications, the trends in structural, electronic, magnetic properties and Curie temperature were investigated. We have made comparative studies with the compounds in the quaternary series CoX$^{prime}$Y$^{prime}$Si with X$^{prime}$ materials from 3$d$ and 4$d$ transition metal series in the periodic table. We observe that the half-metallic behaviour depends primarily on the crystal structure type based on atomic arrangements and the number of valence electrons. As long as these two are identical, the electronic structures and the magnetic exchange interactions bear close resemblances. Consequently, the materials exhibit identical electronic properties, by and large. We analysed the roles of different transition metal atoms in affecting hybridisations and correlated them with the above observations. This work, therefore, provides important perspectives regarding the underlying physics of half-metallic behaviour in quaternary Heusler compounds which goes beyond specifics of a given material. This, thus, paves way for smart prediction of new half-metals. This work also figures out an open problem of understanding how different ternary Heuslers with different electronic behaviour may lead to half-metallic behaviour in quaternary Heuslers with 4$d$ transition metal elements.



rate research

Read More

Employing {it ab initio} electronic structure calculations we extensively study ternary Heusler compounds having the chemical formula X$_2$X$^prime$Z, where X = Mn, Fe or Co; Z = Al or Si; and X$^prime$ changes along the row of 4$d$ transition metals. A comprehensive overview of these compounds, addressing the trends in structural, electronic, magnetic properties and Curie temperature is presented here along with the search for new materials for spintronics applications. A simple picture of hybridization of the $d$ orbitals of the neighboring atoms is used to explain the origin of the half-metallic gap in these compounds. We show that arrangements of the magnetic atoms in different Heusler lattices are largely responsible for the interatomic exchange interactions that are correlated with the features in their electronic structures as well as possibility of half-metallicity. We find seven half-metallic magnets with 100% spin polarization. We identify few other compounds with high spin polarisation as near half-metals which could be of potential use in applications as well. We find that the major features in the electronic structures remain intact if a 3$d$ X$^{prime}$ constituent is replaced with an isoelectronic 4$d$, implying that the total number of valence electrons can be used as a predictor of half-metallic nature in compounds from Heusler family.
The thermoelectric properties of 54 different group 4 half-Heusler (HH) alloys have been studied from first principles. Electronic transport was studied with density functional theory using hybrid functionals facilitated by the $mathbf{k} cdot mathbf{p}$ method, while the temperature dependent effective potential method was used for the phonon contributions to the figure of merit $ZT$. The phonon thermal conductivity was calculated including anharmonic phonon-phonon, isotope, alloy and grain-boundary scattering. HH alloys have an ${it XYZ}$ composition and those studied here are in the group 4-9-15 (Ti,Zr,Hf)(Co,Rh,Ir)(As,Sb,Bi) and group 4-10-14 (Ti,Zr,Hf)(Ni,Pd,Pt)(Ge,Sn,Pb). The electronic part of the thermal conductivity was found to significantly impact $ZT$ and thus the optimal doping level. Furthermore, the choice of functional was found to significantly affect thermoelectric properties, particularly for structures exhibiting band alignment features. The intrinsic thermal conductivity was significantly reduced when alloy and grain boundary scattering were accounted for, which also reduced the spread in thermal conductivity. It was found that sub-lattice disorder on the ${it Z}$-site, i.e. the site occupied by group 14 or 15 elements, was more effective than ${it X}$-site substitution, occupied by group 4 elements. The calculations confirmed that ZrNiSn, ZrCoSb and ZrCoBi based alloys display promising thermoelectric properties. A few other n-type and p-type compounds were also predicted to be potentially excellent thermoelectric materials, given that sufficiently high charge carrier concentrations can be achieved. This study provides insight into the thermoelectric potential of HH alloys and casts light on strategies to optimize thermoelectric performance of multicomponent alloys.
152 - Y. Du , G. Z. Xu , E. K. Liu 2013
In this paper, we investigate the half-metallicity of Heusler alloys Fe2Co1-xCrxSi by first principles calculations and anisotropy magnetoresistance measurements. It is found that, with the increase of Cr content x, the Fermi level of Fe2Co1-xCrxSi moves from the top of valence band to the bottom of conduction band, and a large half-metallic band gap of 0.75 eV is obtained for x=0.75. We then successfully synthesized a series Heusler Fe2Co1-xCrxSi polycrystalline ribbon samples. The results of X-ray diffraction indicate that the Fe2Co1-xCrxSi series of samples are pure phase with a high degree of order and the saturation magnetic moment follows half-metallic Slater-Pauling rule. Except for the two end members, Fe2CoSi and Fe2CrSi, the anisotropic magnetoresistance of Fe2Co1-xCrxSi (x=0.25, 0.5, 0.75) show a negative value suggesting they are stable half-metallic ferromagnets.
58 - Z. Y. Wei , E. K. Liu , Y. Li 2016
The all-d-metal Mn2-based Heusler ferromagnetic shape memory alloys Mn50Ni40-xCoxTi10 (x = 8 and 9.5) are realized. With a generic comparison between d-metal Ti and main-group elements in lowering the transformation temperature, the magnetostructural martensitic transformations are established by further introducing Co to produce local ferromagnetic Mn-Co-Mn configurations. A 5-fold modulation and (3, -2) stacking of [00 10] of martensite are determined by XRD and HRTEM analysis. Based on the transformation, a large magneto-strain of 6900 ppm and a large volume change of -2.54% are observed in polycrystalline samples, which makes the all-d-metal magnetic martensitic alloys of interest for magnetic/pressure multi-field driven applications.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا