Do you want to publish a course? Click here

Screening and enhancement of oscillating electric field in molecules

80   0   0.0 ( 0 )
 Added by Hoang Bao Tran Tan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

According to the Schiff theorem, the atomic electrons completely screen the atomic nucleus from an external static electric field. However, this is not the case if the field is time-dependent. Electronic orbitals in atoms either shield the nucleus from an oscillating electric field when the frequency of the field is off the atomic resonances or enhance this field when its frequency approaches an atomic transition energy. In molecules, not only electronic, but also rotational and vibrational states are responsible for the screening of oscillating electric fields. As will be shown in this paper, the screening of a low-frequency field inside molecules is much weaker than it appears in atoms owing to the molecular ro-vibrational states. We systematically study the screening of oscillating electric fields inside diatomic molecules in different frequency regimes,i.e., when the fields frequency is either of order of ro-vibrational or electronic transition frequencies. In the resonance case, we demonstrate that the microwave-frequency electric field may be enhanced up to six orders in magnitude due to ro-vibrational states. We also derive the general formulae for the screening and resonance enhancement of oscillating electric field in polyatomic molecules. Possible applications of these results include nuclear electric dipole moment measurements and stimulation of nuclear reactions by laser light.



rate research

Read More

We study the screening of a homogeneous oscillating external electric field $E_0$ in noble-gas atoms using atomic many-body calculations. At zero frequency of the oscillations ($omega=0$) the screened field $E(r)$ vanishes at the nucleus, $E(0)=0$. However, the profile of the field $E(r)$ is complicated, with the magnitude of the field exceeding the external field $E_0$ at certain points. For $omega >0$ the field $E(r,omega)$ strongly depends on $omega$ and at some points may exceed the external field $E_0$ many times. The field at the nucleus is not totally screened and grows with $omega$ faster than $omega^2$. It can even be enhanced when $omega$ comes close to resonance with a frequency of an atomic transition. This field interacts with CP-violating nuclear electric dipole moments creating new opportunities for studying them. The screening of the external field by atomic electrons may strongly suppress (or enhance near an atomic resonance) the low energy nuclear electric dipole transitions.
Polyatomic polar molecules are promising systems for future experiments that search for violation of time-reversal and parity symmetries due to their advantageous electronic and vibrational structure, which allows laser cooling, full polarisation of the molecule, and reduction of systematic effects [I. Kozyryev and N.R. Hutzler, Phys, Rev. Lett. {bf 119}, 133002 (2017)]. In this work we investigate the enhancement factor of the electric dipole moment of the electron ($E_text{eff}$) in the triatomic monohydroxide molecules BaOH and YbOH within the high-accuracy relativistic coupled cluster method. The recommended $E_text{eff}$ values of the two systems are 6.65 $pm$ 0.15 GV/cm and 23.4 $pm$ 1.0 GV/cm, respectively. We compare our results with similar calculations for the isoelectronic diatomic molecules BaF and YbF, which are currently used in experimental search for $P,T$-odd effects in molecules. The $E_text{eff}$ values prove to be very close, within about 1.5 $%$ difference in magnitude between the diatomic and the triatomic compounds. Thus, BaOH and YbOH have a similar enhancement of the electron electric dipole moment, while benefiting from experimental advantages, and can serve as excellent candidates for next-generation experiments.
Light scalar Dark Matter with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomic observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies $<$ 1 Hz). In a recent experiment mbox{[Phys. Rev. Lett. 123, 141102 (2019)]} called WReSL (Weekend Relaxion-Search Laboratory), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particularly motivated within a class of relaxion Dark Matter models. We discuss the WReSL experiment, report on progress towards improved measurements of rapid fundamental constant variations, and discuss the planned extension of the work to molecules, in which rapid variations of the nuclear mass can be sensitively searched for.
We examine a range of effects arising from ac magnetic fields in high precision metrology. These results are directly relevant to high precision measurements, and accuracy assessments for state-of-the-art optical clocks. Strategies to characterize these effects are discussed and a simple technique to accurately determine trap-induced ac magnetic fields in a linear Paul trap is demonstrated using $^{171}mathrm{Yb}^+$
We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا