Do you want to publish a course? Click here

Electric Deflection of Rotating Molecules

112   0   0.0 ( 0 )
 Added by Erez Gershnabel
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.



rate research

Read More

Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry an additional phase information, which can be retrieved by the streaking technique. In this contribution we extend the streaking formalism to include coupled electron and nuclear dynamics in molecules as well as initial coherences and demonstrate how it offers a novel tool to monitor non-adiabatic dynamics as it occurs in the vicinity of conical intersections and avoided crossings. Streaking can enhance the time resolution and provide direct signatures of electronic coherences, which affect many primary photochemical and biological events.
We develop a fully quantum mechanical methodology to describe the static properties and the dynamics of a single anharmonic vibrational mode interacting with a quantized infrared cavity field in the strong and ultrastrong coupling regimes. By comparing multiconfiguration time-dependent Hartree (MCTDH) simulations for a Morse oscillator in a cavity, with an equivalent formulation of the problem in Hilbert space, we describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets. We show that depending on the shape of the electric dipole function $d_e(q)$ along the vibrational mode coordinate $q$, molecules can be classified into three general families. For molecules that are polar and have a positive slope of the dipole function at equilibrium, we show that an initial diabatic light-matter product state without vibrational or cavity excitations can evolve into a polariton wavepacket with a large number of intracavity photons, for interaction strengths at the onset of ultrastrong coupling. This build up of intracavity photon amplitude is accompanied by an effective $lengthening$ of the vibrational mode of nearly $10%$, comparable with a laser-induced vibrational excitation in free space. In contrast, molecules that are also polar at equilibrium but have a negative slope of the dipole function, experience an effective mode $shortening$ under equivalent coupling conditions. Our model predictions are numerically validated using realistic $ab$-$initio$ potentials and dipole functions for HF and CO$_2$ molecules in their ground electronic states. We finally propose a non-adiabatic state preparation scheme to generate vibrational polaritons using nanoscale infrared antennas and UV-vis photochemistry or electron tunneling, to enable the far-field detection of spontaneously generated infrared quantum light.
We investigate theoretically the long-range electrostatic interactions between a ground-state homonuclear alkali-metal dimer and an excited alkali-metal atom taking into account its fine-structure. The interaction involves the combination of first-order quadrupole-quadrupole and second-order dipole-dipole effects. Depending on the considered species, the atomic spin-orbit may be comparable to the atom-molecule electrostatic energy and to the dimer rotational structure. Here we extend our general description in the framework of the second-order degenerate perturbation theory [M. Lepers and O. Dulieu, Eur. Phys. J. D, 2011] to various regimes induced by the magnitude of the atomic spin-orbit. A complex dynamics of the atom-molecule may take place at large distances, which may have consequences for the search for an universal model of ultracold inelastic collisions as proposed for instance in [Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. textbf{104}, 113202 (2010)].
The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF reconstruction, this protocol makes use of time-resolved LF measurements, in which a rotational wavepacket is prepared and probed via photoionization, followed by a numerical reconstruction routine; however, in contrast to other methodologies, the protocol developed herein does not require determination of photoionization matrix elements, and consequently takes a relatively simple numerical form (matrix transform making use of the Moore-Penrose inverse). Significantly, the simplicity allows application of the method to the successful reconstruction of MFPADs for polyatomic molecules. The scheme is demonstrated numerically for two realistic cases, $N_2$ and $C_2H_4$. The new technique is expected to be generally applicable for a range of MF reconstruction problems involving photoionization of polyatomic molecules.
We create fermionic dipolar $^{23}$Na$^6$Li molecules in their triplet ground state from an ultracold mixture of $^{23}$Na and $^6$Li. Using magneto-association across a narrow Feshbach resonance followed by a two-photon STIRAP transfer to the triplet ground state, we produce $3,{times},10^4$ ground state molecules in a spin-polarized state. We observe a lifetime of $4.6,text{s}$ in an isolated molecular sample, approaching the $p$-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا