Do you want to publish a course? Click here

Probing fast oscillating scalar dark matter with atoms and molecules

71   0   0.0 ( 0 )
 Added by Dionysios Antypas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Light scalar Dark Matter with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomic observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies $<$ 1 Hz). In a recent experiment mbox{[Phys. Rev. Lett. 123, 141102 (2019)]} called WReSL (Weekend Relaxion-Search Laboratory), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particularly motivated within a class of relaxion Dark Matter models. We discuss the WReSL experiment, report on progress towards improved measurements of rapid fundamental constant variations, and discuss the planned extension of the work to molecules, in which rapid variations of the nuclear mass can be sensitively searched for.



rate research

Read More

In the presence of P-violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba$^+$, Yb, Tl, Fr and Ra$^+$ using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC amplitudes in Cs, Yb and Tl, as well as the nuclear anapole moment of $^{133}$Cs, we constrain the P-violating vector-pseudovector nucleon-electron and nucleon-proton interactions mediated by a generic vector boson of arbitrary mass. Our limits improve on existing bounds from other experiments by many orders of magnitude over a very large range of vector-boson masses.
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
We investigate the thermal cosmology and terrestrial and astrophysical phenomenology of a sub-GeV hadrophilic dark sector. The specific construction explored in this work features a Dirac fermion dark matter candidate interacting with a light scalar mediator that dominantly couples to the up-quark. The correct freeze-out relic abundance may be achieved via dark matter annihilation directly to hadrons or through secluded annihilation to scalar mediators. A rich and distinctive phenomenology is present in this scenario, with probes arising from precision meson decays, proton beam dump experiments, colliders, direct detection experiments, supernovae, and nucleosynthesis. In the future, experiments such as NA62, REDTOP, SHiP, SBND, and NEWS-G will be able to explore a significant portion of the cosmologically motivated parameter space.
We propose and experimentally demonstrate a method for detection of light scalar Dark Matter (DM), through probing temporal oscillations of fundamental constants in an atomic optical transition. Utilizing the quantum information notion of Dynamic Decoupling (DD) in a table-top setting, we are able to obtain model-independent bounds on variations of $alpha$ and $m_e$ at frequencies up to the MHz scale. We interpret our results to constrain the parameter space of light scalar DM field models. We consider the generic case, where the couplings of the DM field to the photon and to the electron are independent, as well as the case of a relaxion DM model, including the scenario of a DM boson star centered around Earth. Given the particular nature of DD, allowing to directly observe the oscillatory behaviour of coherent DM, and considering future experimental improvements, we conclude that our proposed method could be complimentary to, and possibly competitive with, gravitational probes of light scalar DM.
According to the Schiff theorem, the atomic electrons completely screen the atomic nucleus from an external static electric field. However, this is not the case if the field is time-dependent. Electronic orbitals in atoms either shield the nucleus from an oscillating electric field when the frequency of the field is off the atomic resonances or enhance this field when its frequency approaches an atomic transition energy. In molecules, not only electronic, but also rotational and vibrational states are responsible for the screening of oscillating electric fields. As will be shown in this paper, the screening of a low-frequency field inside molecules is much weaker than it appears in atoms owing to the molecular ro-vibrational states. We systematically study the screening of oscillating electric fields inside diatomic molecules in different frequency regimes,i.e., when the fields frequency is either of order of ro-vibrational or electronic transition frequencies. In the resonance case, we demonstrate that the microwave-frequency electric field may be enhanced up to six orders in magnitude due to ro-vibrational states. We also derive the general formulae for the screening and resonance enhancement of oscillating electric field in polyatomic molecules. Possible applications of these results include nuclear electric dipole moment measurements and stimulation of nuclear reactions by laser light.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا