No Arabic abstract
We identify minimal observing cadence requirements that enable photometric astronomical surveys to detect and recognize fast and explosive transients and fast transient features. Observations in two different filters within a short time window (e.g., g-and-i, or r-and-z, within < 0.5 hr) and a repeat of one of those filters with a longer time window (e.g., > 1.5 hr) are desirable for this purpose. Such an observing strategy delivers both the color and light curve evolution of transients on the same night. This allows the identification and initial characterization of fast transient -- or fast features of longer timescale transients -- such as rapidly declining supernovae, kilonovae, and the signatures of SN ejecta interacting with binary companion stars or circumstellar material. Some of these extragalactic transients are intrinsically rare and generally all hard to find, thus upcoming surveys like the Large Synoptic Survey Telescope (LSST) could dramatically improve our understanding of their origin and properties. We colloquially refer to such a strategy implementation for the LSST as the Presto-Color strategy (rapid-color). This cadences minimal requirements allow for overall optimization of a survey for other science goals.
We performed a wide-area (2000 deg$^{2}$) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.
The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and orphan Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera (DECam) at CTIO. The observations are part of the Deeper Wider Faster program, a multi-facility, multi-wavelength program designed to discover fast transients, including counterparts to Fast Radio Bursts and gravitational waves. Our tests of the Mary pipeline on DECam images return a false positive rate of ~2.2% and a missed fraction of ~3.4% obtained in less than 2 minutes, which proves the pipeline to be suitable for rapid and high-quality transient searches. The pipeline can be adapted to search for transients in data obtained with imagers other than DECam.
We developed a pulsar search pipeline based on PRESTO (PulsaR Exploration and Search Toolkit). This pipeline simply runs dedispersion, FFT (Fast Fourier Transformation), and acceleration search in process-level parallel to shorten the processing time. With two parallel strategies, the pipeline can highly shorten the processing time in both the normal searches or acceleration searches. This pipeline was first tested with PMPS (Parkes Multibeam Pulsar Survery) data and discovered two new faint pulsars. Then, it was successfully used in processing the FAST (Five-hundred-meter Aperture Spherical radio Telescope) drift scan data with tens of new pulsar discoveries up to now. The pipeline is only CPU-based and can be easily and quickly deployed in computing nodes for testing purposes or data processes.
The radio pulsar and rotating radio transient populations are only known in and near the Milky Way. Investigating such populations in other galaxies requires deep pulsar and transient searches. We performed 4-h radio observations of nearby galaxies M33, M81 and M82 with LOFAR. Our main purpose was to characterise the bright end of the pulsar population in other galaxies, and compare it to that of the Milky Way. We searched for extragalactic radio pulsars through a periodic-pulse search, and for sporadic fast radio transients through a single-pulse search. We coherently combined at most 23 LOFAR Core High-Band Antenna (HBA) stations and covered M33, M81, and M82 in their entirety using multiple tied-array beams. No pulsating sources or single pulses were found. We have, therefore established stricter limits on the extragalactic pulsar flux density at lower frequencies than those obtained in previous Arecibo, GBT, and WSRT searches. We conclude that in nearby galaxies M33, M81, and M82 there are no pulsars shining toward Earth with pseudo luminosities greater than a few times that of the brightest pulsars in our Milky Way.
Supergiant Fast X-ray Transients are a class of Galactic High Mass X-ray Binaries with supergiant companions. Their extreme transient X-ray flaring activity was unveiled thanks to INTEGRAL/IBIS observations. The SFXTs dynamic range, with X-ray luminosities from 1E32 erg/s to 1E37 erg/s, and long time intervals of low X-ray emission, are puzzling, given that both their donor star properties and their orbital and spin periodicities seem very similar to those displayed by massive binaries with persistent X-ray emission. Clumpy supergiant winds, accretion barriers, orbital geometries and wind anisotropies are often invoked to explain their behavior, but still several open issues remain. A review of the main recent observational results will be outlined, together with a summary of the new scenarios proposed to explain their bright flaring X-ray activity. The main result of a long Suzaku observation of the SFXT IGRJ16479-4514 with the shortest orbital period is also briefly summarized. The observation of the X-ray eclipse in this source allowed us to directly probe the supergiant wind density at the orbital separation, leading to the conclusion that it is too large to justify the low X-ray luminosity. A mechanism reducing the accretion rate onto the compact object is required.