Do you want to publish a course? Click here

Mary, a pipeline to aid discovery of optical transients

104   0   0.0 ( 0 )
 Added by Igor Andreoni
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and orphan Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera (DECam) at CTIO. The observations are part of the Deeper Wider Faster program, a multi-facility, multi-wavelength program designed to discover fast transients, including counterparts to Fast Radio Bursts and gravitational waves. Our tests of the Mary pipeline on DECam images return a false positive rate of ~2.2% and a missed fraction of ~3.4% obtained in less than 2 minutes, which proves the pipeline to be suitable for rapid and high-quality transient searches. The pipeline can be adapted to search for transients in data obtained with imagers other than DECam.



rate research

Read More

We performed a wide-area (2000 deg$^{2}$) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.
We identify minimal observing cadence requirements that enable photometric astronomical surveys to detect and recognize fast and explosive transients and fast transient features. Observations in two different filters within a short time window (e.g., g-and-i, or r-and-z, within < 0.5 hr) and a repeat of one of those filters with a longer time window (e.g., > 1.5 hr) are desirable for this purpose. Such an observing strategy delivers both the color and light curve evolution of transients on the same night. This allows the identification and initial characterization of fast transient -- or fast features of longer timescale transients -- such as rapidly declining supernovae, kilonovae, and the signatures of SN ejecta interacting with binary companion stars or circumstellar material. Some of these extragalactic transients are intrinsically rare and generally all hard to find, thus upcoming surveys like the Large Synoptic Survey Telescope (LSST) could dramatically improve our understanding of their origin and properties. We colloquially refer to such a strategy implementation for the LSST as the Presto-Color strategy (rapid-color). This cadences minimal requirements allow for overall optimization of a survey for other science goals.
153 - Neil Zimmerman 2011
Project 1640 is a high contrast near-infrared instrument probing the vicinities of nearby stars through the unique combination of an integral field spectrograph with a Lyot coronagraph and a high-order adaptive optics system. The extraordinary data reduction demands, similar those which several new exoplanet imaging instruments will face in the near future, have been met by the novel software algorithms described herein. The Project 1640 Data Cube Extraction Pipeline (PCXP) automates the translation of 3.8*10^4 closely packed, coarsely sampled spectra to a data cube. We implement a robust empirical model of the spectrograph focal plane geometry to register the detector image at sub-pixel precision, and map the cube extraction. We demonstrate our ability to accurately retrieve source spectra based on an observation of Saturns moon Titan.
158 - Sasha Hinkley 2010
Through the combination of high-order Adaptive Optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168+/-.016 solar masses, giving a mass ratio for this system q = 0.082. Assuming the two objects are coeval, this mass suggests a M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semi-major axis to be greater than 24.9 AU, the period > 124$ yrs, and eccentricity > 0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT.
The Burst Observer and Optical Transient Exploring System (BOOTES) is a network of telescopes that allows the continuous monitoring of transient astrophysical sources. It was originally devoted to the study of the optical emission from gamma-ray bursts (GRBs) that occur in the Universe. In this paper we show the initial results obtained using the spectrograph COLORES (mounted on BOOTES-2), when observing optical transients (OTs) of diverse nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا