Do you want to publish a course? Click here

On vortex strength and beam propagation factor of fractional vortex beams

73   0   0.0 ( 0 )
 Added by Li-Gang Wang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fractional vortex beams (FVBs) with non-integer topological charges attract much attention due to unique features of propagations, but there still exist different viewpoints on the change of their total vortex strength. Here we have experimentally demonstrated the distribution and number of vortices contained in FVBs at Fraunhofer diffraction region. We have verified that the jumps of total vortex strength for FVBs happens only when non-integer topological charge is before and after (but very close to) any even integer number, which originates from two different mechanisms for generation and movement of vortices on focal plane. Meanwhile, we have also measured the beam propagation factor (BPF) of such FVBs, and have found that their BPF values almost increase linearly in one component and oscillate increasingly in another component. Our experimental results are in good agreement with numerical results.



rate research

Read More

We theoretically and experimentally studied a novel class of vortex beams named open vortex beams (OVBs). Such beams are generated using Gaussian beams diffracted by partially blocked fork-shaped gratings (PB-FSGs).The analytical model of OVBs in the near field and far field is given by superpositions of Hypergeometric (HyG) modes. Unlike conventional integer and fractional vortex beams, the OVBs can have both an open ring structure and an integer topological charge (TC). The TC is decided by the circumference covered by the open ring. It is also quantitatively shown that a $pi/2$ rotation of the open ring occurs in the propagation of an OVB due to the Gouy phase shift. Futhermore, we demonstrate experimental generation and detection of OVBs. Our experimental results are in very good agreement with the theory. We believe that the OVB can be the potential candidate for numerous applications, such as particle manipulation, quantum information and optical metrology.
We have experimentally investigated the evolution properties of multiramp fractional vortex beams (MFVBs) in free space, by using a fundamental Gaussian beam reflecting from a phase-modulated spatial light modulator. The issue about the total vortex strength of such MFVBs is systematically addressed, and our result reveals the dependence of the total vortex strength depends on both the non-integer topological charge $alpha $ and the multiramp number $m$ contained in initial multiramp phase structures. In the near-field region, vortices contained in MFVBs are unstable and it is hard to effectively confirm the vortex strength for such fields. However, in the far-field region, the evolution of vortices in fields becomes stable and the behavior of vortex strength is confirmed experimentally via measuring vortex structures by interference method. These findings give us an understanding of such complex MFVBs and may lead to potential applications in light signal process and propagation.
We have derived the corresponding equations and found their solutions both for nonparaxial and paraxial beams. The paraxial solutions we have presented in the form of the generalized Hermite-Gaussian beams propagating perpendicular to the optical axis of a uniaxial crystal. We have also constructed the generalized Laguerre-Gaussian beams at the z=0 plane and analyzed their evolution in a homogeneous isotropic medium. Comparing it with the evolution of the standard Laguerre-Gaussian beams with and in the crystal we have revealed that the additional elliptic deformation of the extraordinary beam results in topological reactions that essentially distorts field structure for the account of different rotation rates of the vortex row originated from the centered degenerate optical vortex and the conoscopic pattern. We have predicted conversion of the vortex topological charge at the beam axis similar to that in astigmatic lenses and analyzed the radical differences with this process. We have revealed the synchronic oscillations of the spin angular momentum and the sign of the vortex topological charge at the beam axis.
Harnessing the spontaneous emission of incoherent quantum emitters is one of the hallmarks of nano-optics. Yet, an enduring challenge remains-making them emit vector beams, which are complex forms of light associated with fruitful developments in fluorescence imaging, optical trapping and high-speed telecommunications. Vector beams are characterized by spatially varying polarization states whose construction requires coherence properties that are typically possessed by lasers-but not by photons produced by spontaneous emission. Here, we show a route to weave the spontaneous emission of an ensemble of colloidal quantum dots into vector beams. To this end, we use holographic nanostructures that impart the necessary spatial coherence, polarization and topological properties to the light originating from the emitters. We focus our demonstration on vector vortex beams, which are chiral vector beams carrying non-zero orbital angular momentum, and argue that our approach can be extended to other forms of vectorial light.
According to Rytov approximation theory, we derive the analytical expression of the detection probability of the autofocusing Airy beam (AAB) with powerexponent-phase carrying orbital angular momentum (OAM) mode, AAB-PEPV. We analyze the influence of oceanic turbulence on the propagation characteristics of the AAB-PEPV. The results show that the AAB-PEPV beam has a higher detection probability at the receiver when the anisotropic ocean turbulence has a larger unit mass fluid dynamic energy dissipation rate, a larger internal ratio factor, and a higher anisotropy factor. At the same time, the detection probability decreases with the temperature change dissipation rate, the temperature and salinity contribution to the refractive index spectrum. In addition, the larger power exponential phase and the longer wavelength the AAB-PEPV beam has, the better anti-interference the AAB-PEPV beam has.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا